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CHAPTER 1

INTRODUCTION

Reliability and timeliness are the two most important and critical
attributes of command and control systems. The command and control system
functions involve control of defense system resources and communication of
intelligence and command information among the various constituents of the
system. This requires timely collecting, processing, and communicating large
amount of information to ensure effective coordination among the
geographically dispersed components of the command and control system.

Distributed system technology provides an important and attractive
approach to supporting the operations of the future command and control
systems. This technology potentially supports:

1. Dispersion of the data as well as the processing functions to various
locations of the command and control system.

2. Redundancy of data and functions to improve the reliability of the system
due to the multiplicity of processing resources.

3. Efficient communication of information by networking of processing
resources.

The goal of this contract is to synthesize a set of techniques for building
reliable distributed systems for command and control applications and to
evaluate their designs for fault-tolerance, reliability and performance. This
work involved study of the system recovery mechanisms for distributed systems,
development of concepts for integrating them into a distributed operating
system, and finally a set of methods for evaluating the performance and
reliability of such designs. The final outcome of this contract is a
two-volume system designers guidebook titled A DESIGNERS GUIDE TO RELIABLE
DISTRIBUTED SYSTEMS. The first volume of this guidebook presents the design
and analysis methods, and the second volume contains the detailed designs of
an example distributed operating system called Zeus and and its performance
evaluation data.

The design of a distributed system involves many complex decisions. The
purpose of a designers guidebook is to help a designer in systematically
addressing the various design issues and making the most appropriate decisions
so that the final design meets the desired requirements. It is important to
stress the distinction between a guidebook and a handbook. A guidebook
provides a comprehensive set of procedures which can aid a designer in
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achieving a goal. A handbook provides a comprehensive set of results (e.g.,
tables) which provide a basis from which a designer may make design decisions
for a specific application. It is appropriate to write a handbook if one has
the details of a set of applications of interest and the associated system
environments. A guidebook is applicable to a larger set of problems and
designers because of its orientation to procedures rather than results.

A guidebook describes the steps which take a designer from a set of
requirement statements to a detailed system design which would exhibit the
desired operational characteristics in a specified implementation base. Each
design step refines the design and further defines what are the system's
operational attributes. One set of attributes are those associated with the
fault tolerance of a system -- availability, reliability, and survivability.
An example of the design decisions that must be made are the degree of
availability required for a given application and the performance required of
a system environment to achieve it. It is a well-established principle that
the designs should be subjected to early evaluations before starting any
implementations. In fact, the design steps and the evaluation steps should
proceed in a closely coupled fashion. This book presents a set of design
guidelines for constructing fault tolerant distributed systems and a set of
procedures for evaluating the desired operational characteristics of such
designs.

The main contribution of this research is a unified presentation of
system recovery mechanisms, a framework for their integration, and a set of
evaluation techniques. It provides a starting point for the development of a
design methodology of fault-tolerant distributed systems.

The system designers guidebook is organized into two volumes. The first
volume describes reliability mechanisms, a framework for expressing designs,
and techniques for evaluating mechanisms. There are two classes of problems
that are not addressed in the reliability mechanism discussion -- security and
Byzantine agreement. These problems were deemed outside of the scope of this
contract. A framework based on object-oriented design is defined and used for
expressing designs because it motivates the discussion of reliability
mechanisms and aids in their integration into a unified design model. An
example distributed operating system called Zeus is derived from the framework
and used as a basis for presenting and demonstrating analysis techniques.
This example design illustrates the integration of recovery mechanisms into
distributed system designs. Zeus should be regarded as a design framework
rather than a point solution. Although the mechanisms, techniques, and
results are described within the context of an object-oriented design, they
are equally applicable to process-oriented designs. Volume II contains the
complete details of the example system and the results of its analysis. Some
familiarity with Ada [DoD83](1) and the Concurrent System Definition Language
[FRAN83a] is required to understand the detailed designs. The definition of
the Cpncurrent System Definition Language is included as an appendix to this
repoet.

(1) Ada is a registered trademark of the U.S. Government, Ada Joint Program
Office
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INTRODUCTION

The approach taken in developing the system designers guidebook is
depicted in Figure 1-1. The system recovery mechanism are integrated into
the Zeus design. Concurrent System Definition Language (CSDL) is used for the
formal definition of the designs. PAWS (Performance Analysts Workbench
System), Gypsy, NetRAT, and Path Pascal are used to evaluate the Zeus designs.
The methodology used in the design, the analysis process, and the evaluation
results are documented in the system designers guidebook.

RECOVERY
MECHANISMS ICOMPILEFOR DG33JTTnW C2 'ITWT zEuS OPERATING COMPILE -

SYTMS SSYSTEM DESIGN

EE N 1, , COMPILE DESIGNER'S
SEN NEMENT 1 I - GUIDEBOOK

PAws, NETRAT INTEGRATE DESIGN W COMPILPWS TML= AOLY' COMPILE -aCSDL, PATH PASCAL -cotMP1LE-

FIgm 1-1. Appach 1o DIe buld C' SyMi PlRco wyM iminas

This report presents a concise yet complete overview of the technical
approach taken during the course of this program and the highlights of the
important technical accomplishments. Each chapter of this report describes an
important milestone in the course of this contract, our approach in achieving
the milestone, the uniqueness of the approach, and finally the major
accomplishments. One of the highlights of our approach in developing the
system designers guidebook is the definition and design of an example
distributed operating system and the application of a set of design evaluation
techniques using this example system as a testbed.

A system design can only be done in the context of its application
environment. For this reason we pursued the task of studying the operational
environment and the functional requirements of distributed command and control
systems. These results of our study are described in the second chapter of
this report. The main emphasis of this study was on the recovery mechanisms
for distributed command and control system. One of the tasks was to survey
the these recovery mechanisms and provide a comprehensive description of the
mechanisms In the system designers guidebook. An important outcome of this
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task was an object-oriented design model for building reliable distributed
systems. This design model integrates the surveyed recovery mechanisms into
one framework. A brief overview of the survey is presented in Chapter 3. The
object oriented design model and the example system, called Zeus, which is
based on this model, are described in Chapter 4 and 5. Chapter 5 is devoted
to the detailed designs of the example system and the formal definition of
such designs. In this context we discuss the work performed on Concurrent
System Definition .anguage (CSDL). The description of various analysis
tools/techniques form an important part of the system designers guidebook. In
this contract work we focused on using PAWS (Performance Analysts Workbench
System)(1) for performance evaluations, NetRAT for reliability evaluations,

Gypsy for formal correctness proofs, and Path Pascal for functional simulation
for validating fault-tolerance. Chapter 6 describes the highlights of our
work in the development and application of these techniques to reliable
distributed systems. Chapter T presents the goals of the performance modeling
of the Zeus system using PAWS, approach for evaluations, and the summary of
the simulation results. Some of the possible future directions for this work
include a detailed study of recovery mechanisms in a process-oriented design,
design of fault-tolerant real-time systems, experimental evaluations of
recovery mechanisms in the context of the object oriented framework developed
under this contract, or development of an object oriented general purpose
distributed operating system such as Zeus. Chapter 8 is devoted to the
possible future directions for this work.

(1) PAWS is a registered trademark of Information Research Associates, Austin,

Texas.
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CHAPTER 2

DISTRIBUTED COMMAND AND CONTROL SYSTEMS

A system design can be meaningfully and successfully carried out only in
the context of its intended application environment. A thorough understanding
of the applications is essential in order to mamke the requirement statements
for the system functionality, reliability, and performance. The system
functionality and the associated reliability statements identify the kinds of
failures the system must withstand and the consistency that must be maintained
for the system objects in the presence of failures and concurrent operations.
The performance statements identify the desired response time and throughput
of the various system functions under the specified workload. The results
discussed here describe the operational characteristics and the functional
requirements of distributed command and control systems, and also identify the
forms of requirement statements for system performance and reliability. The
results of this effort are applicable to both strategic and tactical command
and control systems.

2.1 Command and Control Systems

Any command and control system must support four basic functions:
communication, navigation, data collection and decision support. These
systems can be divided into two broad categories, strategic and tactical.
Systems in these two categories differ in the geographic scope of the system,
their functional complexity and the mobility of the system nodes. Strategic
command and control system encompass a relatively large region of operations
(roughly 500 to 1,000 miles radius). It maintains large long-lived databases
and contains several smaller, and possibly tactical, command and control
systems as its constituents. Tactical command and control systems are
generally smaller in geographic scope; the distance between nodes is typically
10-200 miles. The nodes of the tactical systems are relatively mobile - they
can be moved and installed in a few days. The communications facilities that
connect nodes of a .actical system are usually much less reliable than those
used to connect the nodes of strategic systems.

2.1.1 Command and Control System Function

The general goals for the data processing elements in a command and
control system are to:

o Make information available to the users who need it.
o Improve the response time of time-sensitive operations.

5



o Support the database needs of the users.
o Make available global databases which are needed for planning,

coordination, threat assessment, targeting, intelligence production and
status monitoring.

o Provide reliable dissemination of messages carrying requirements,
commands, warnings and status information.

o Provide extensive degraded mode operating capability.
o Provide enhanced survivability and continuous operation under the loss

of C2 system components.
o Support multi-user multi-level security of information.

Efficient database sharing is the Most crucial requirement of command and
control systems. A command and control system must support global logical
objects for the following kinds of information: weather, personnel,
logistics, enemy situation, friendly situation, surveillance and
identification, warnings and alerts, mission status, tactical air support
requests, etc. The major role of the data processing functions performed by a
command and control system are concerned with maintaining this data base and
providing timely and accurate reports using the database.

2.1.2 Operational Environment

Because of the evolutionary nature of future distributed C2 systems, it
is desirable to adopt an approach which permits relatively easy changes for
system expansions, capacity upgrades, functionality upgrades, hardware
substitution, and addition of new elements. The approach of modular system
design should also help in rapidly configuring new systems.

Instead of designing systems to meet certain specific requirements, it is
desirable to provide an architecture which can adapt easily to the long term
changing requirements due to the state of the technology and the
world-situation, as well as the short-term changes in requirements due to the
tactical environment. One can use physical and communication environment
features of distributed command and control systems to characterize their
operational environment.

Physical Environment:

A single command and control system consists of several geographically
dispersed command centers. The distance between the units can range from a
few miles to a few hundred miles for tactical systems, and up to a few
thousand miles for strategic systems. The geographical dispersion serves to
increase the field of view or to provide higher survivability to the command
centers by locating them in rear areas.

Communication between the command centers in a C2 system can be
implemented with microwave or radio frequency channels. In some cases, where
the distances are not too large, coaxial cables or fiber-optics cables may be
used. The command centers are high value targets, and placing them in the
rear areas for reasons of survivability will decrease the performance because
of communication delays.
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DISTRIBUTED COMMAND AND CONTROL SYSTEMS

Most of the communication among and within constituent command centers of
a command and control system consists of command messages, and database
updates and query messages. Most of the other data processing requirements of
a command center will normally be supported by the resources co-located within
it.

Most of the important databases critical to the command and control
operations are maintained at the command centers. To support continued
operations in the event of the loss of a command center, another center must
be able to reconstruct the database from the replicated components of the
global database.

Communications Environment:

The communications within a command center will be, In general, supported
by a local area network (LAN) and that among the command centers will be
supported by long-haul networks. Thus a long-haul network connects several
LANs in a C2 system. The long-haul network topology will change dynamically
because mobile command centers will be moved in response to the tactical
situation. The length of the a LAN communication link can range from a few
meters to hundreds of meters. The long-haul links can be up to about thousand
miles long. The communication bandwidth for LANs ranges between 1-10 mb/sec,
and for long-haul communication from 10-50 kb/sec.

The long-haul network must be connected to external elements such as the
World Wide Military Command and Control System (WWHCCS), Intelligence Data
Handling System Communications (IDMSC) and the Defense Communications System
(DCS).

Some of the biggest problems which will affect the communications system
performance are electronic warfare, self-Jamming, and the loss of nodes
(mininets). Network partitioning, node drop-out, node reunion, network
reconfiguration are some of the problems which the designers must address.

2.2 Architecture Of Distributed Systems

Redundancy of both hardware and software resources is the most important
characteristic of reliable systems that support continued operations despite
component losses. The geographical distribution of critical system databases
and processing resources is key to the design of survivable systems. Thus, in
the event of loss of a particular site in a command and control system, it
should be possible to use database copies and processing resources at other
sites. The need to maintain and update replicated databases imposes the
following requirements for the underlying architecture:

The system must contain appropriate processing resources (CPU, memory,
secondary storage) at each site.

There must be communication between the sites as well as with local and
remote users of the databases (a) to keep the replicated copies mutually
consistent and (b) to provide access to remote users on system
reconfiguration.
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These two requirements make distributed system architectures the most
natural candidates for supporting highly survivable C2 systems. Functional
redundancy and geographical dispersion enables distributed systems to survive
hostile actions and to provide continuous operation. These advantages of
distributed systems arise partially from the distribution of system state
information. However, effective survivability mechanisms are based upon
consistent system state. Distributed operating systemS used in this
application must incorporate mechanisms to maintain the consistency of the
distributed system state information in the presence of concurrent updates and
system component failures. This is essential to guarantee correct functioning
on reconfiguratlon and restart; therefore, suitable recovery mechanisms and
concurrency control mechanisms are required in the distributed operating
system to maintain consistency of distributed state variables.

A distributed sYstem consists of multiple computers interconnected by a
communication network that cooperate to complete a computation. The
mechanisms that enable the cooperation are Implemented by a distributed
operating system. A conceptual picture of a distributed operating system is
shown In Figure 2-1.

Distributed Operating System

F*g 2-1.
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DISTRIBUTED COMMAND AND CONTROL SYSTEMS

A site consists of at least one physical processor, an operating system
kernel, primary and possibly secondary memory, an interface to the
communication network, and possibly interfaces to input/output facilities.
The sites are physically separated and communication occurs by message
exchange rather than by shared memory. Each site has processes and resources
which constitute fragments of system processing activities. Since control of
these processing activities is distributed among the sites, a single site
normally has neither system-wide authority nor a complete view of the global
system state.

A distributed operating system creates and manages logical (perhaps
physically distributed) resources (processes and files) and physical resources
(processors and memories). A distributed operating system is based on a set
of protocols which govern interaction between sites. The operating system
kernel at each site manages its physical resources autonomously and may
cooperate with other kernels in the management of its logical resources. The
state information may be partitioned and distributed among the operating
system kernels. The individual kernels operate concurrently, and possibly
asynchronously on the basis of locally available state information. The
system interface consists of a set of functions which the distributed
operating system provides to the application environment. Ideally, these
interfaces should have the following features:

I. Transparency of resource locations: The user-visible functions for
accessing the resources in the system should make transparent to the
clients the location of the resources. The mechanisms for accessing the
remote and the local resources should be uniform.

2. Transparency of recovery mechanisms: The interfaces provide by the
distributed operating system should make the recovery mechanisms
transparent to the clients; however, the clients should have enough
control over the selection of those parameters that are critical to the
system performance in different application environments.

A communication system transfers information among the sites in a
distributed system. It is used by distributed operating system kernels,
system processes, and application processes to convey updates and to gain
access to global system state and to utilize resources provided by other
sites. Communication systems typically appear in system designs and
implementations at a higher level of abstraction because the detailed
realization is isolated from the remainder of the system. In the context of a
command and control system, a communication system is meant to include an
internet, a collection of interconnected networks.

2.3 Reliable System Requirements

An application may be described as a collection of objects on which
operations are executed by users. Some operations may be combined together
and executed as a single end-user operation. A requirements statement may be
made about the performance and reliability of the operations as described
below.
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Performance Requirements: In general the performance requirements are
specified in terms of the response time and throughnut. There are several
ways in which these two measures may be specified fcr a u-'.tributed system.
Average throughput and average response time for the execution of a given
operation on an object can be specified in the following terms:

(1) For the overall system,
(2) For some particular sites in the system,
(3) For each operational mode such as emergency/peace-time modes,
(4) As a function of available resources (sites) In the system.

In addition to the mean values, upper and lower bounds or variances may be
specified for these measures.

Reliability Requirements: Traditionally the reliability requirements for a
service or operation are specified in terms of its expected availability and
mean-time-to-failure. Like the performance requirements specifications, the
reliability requirements can also be specified in terms of the four ways
described above. It may also include the types of failures that must be
withstood, and the number of failures of a given type that must be withstood.

Similar requirements may be made about groups of operations. In
addition, it is assumed that statements are made about what the hardware
configuration is and the assignment of objects and operations to sites. From
such information we are interested in answering two questions: "What level of
reliability does a system provide?", and "What is the extra cost of the
reliability?".

Ideally a user should be able to specify the desired reliability
requirements for objects, operations, and groups of operations without knowing
the details of the implementing mechanisms; tools should then automatically
configure a system. More realistically, a system administrator who is
knowledgeable about the system's hardware and software will manually make the
selections and adjustments needed to achieve the desired level of reliability.

In order to state system requirements and to develop a system that meets
them we are still faced with a problem of how to specify the requirements.
Traditionally, component reliability is given by statistical quantities such
as the mean time to failure (MTTF), mean time to repair (HTTR), and the
probability of availability. This suggests that one way for a user to specify
the reliability of objects and operations is to give the desired values
(e.g.,O.95 TTF). This is certainly the most accurate way of defining the
expected reliability of an object since it takes into account the
interrelation among all of the dependent objects and components of a system
and their individual characteristics. There are, however, at least three
problems with using statistical quantities for user level specifications.

First is the problem of using small quantities to specify values. Should
the M F be 0.94 or 0.95? Why? Would different users choose different values
for similar objects?

Secondly, there are typically many different combinations of parameters,
replication strategies, and configurations which will yield the same or
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roughly the same MTTF and availability for a given object. A saple numerical
quantity gives no indication as to which of several possible strategies to
choose. Furthermore, without being given additional information, it is
difficult for an administrator and probably impossible for the system itself
to choose the appropriate solution.

The third problem arises due to the application environment which is
being considered in this guidebook. The probabilities of component failures
may change unpredictably under military stress conditions. The MTTF and
availability of a component completely describe Its fault characteristics.
There are many circumstances, however, where these metrics are difficult or
impossible to evaluate. As an example of such a circumstance, consider a
command and control system in a potential combat situation. The definition of
a component "fault" in such a system would have to include the destruction or
disruption of that component in combat; and thus, this eventuality must be
taken into account when calculating the MTTF and availability of the
component. Unfortunately, the probability of an attack, or the probability
that an attack will ensue in such a way as to affect the performance of a
given component of the system, depends on a number of decidedly
non-quantifiable factors such as political climate, human factors, recent
history, and so on. In such conditions it is more reasonable to ask questions
such as "Does this service (function) remain available given that a set of
components are unavailable?".

The alternative to using statistical quantities provides a set of
pre-defined reliability levels. Associated with each reliability level is a
consistency (integrity) specification. The levels overcome the problems with
strictly numerical specifications by associating a boolean-valued consistency
requirement. An object is said. to belong to a certain reliability level for a
given set of faults if the associated consistency specifications are
maintained under the presence of those faults. The object is viewed as being
"completely immune" to the faults in that set for the associated consistency
level. The maximum cardinality of such a set for a given reliability level of
an object determines the robustness of that object. Faults may include events
such as site failures, link failures, disk failures, and memory failures.
Each category can be refined when it is appropriate to do so. For example
disk failures can be refined to include single page failures and disk pack
failures.

2.4 Design Issues And Tradeoffs

Effectiveness of a recovery mechanism can be measured in terms of
recovery time and performance overhead. To see why the recovery time and
performance overhead are important in evaluating the recovery mechanism,
consider the performance of a system under normal and faulty conditions.
Assume that throughput (defined as the number of units of work performed per
unit of time) is an indication of the system performance. If there were no
failures, there would be no need for recovery mechanisms. In this
hypothetical situation, under a constant load (e.g., fixed number of jobs
running in the system at all times) the throughput stays constant at a level
that is referred to as the ideal level of performance. Introducing recovery
mechanisms into this system to enable it to deal with failures degrades the
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performance even when there are no failures. An operating overhead is imposed
equal to (1) the processing overhead required to check and maintain
information about system state for recovery and (2) a storage overhead equal
to the storage required to hold redundant information. It is desirable to
choose those recovery mechanisms that have the least performance overhead
under normal operation.

When an error condition occurs, certain recovery procedures are
initiated. These procedures cause an even higher performance overhead. This
is called failure recovery operation overhead. After the fault is eventually
cleared and the system is recovered, the performance goes back to the level
before the failure. Figure 2-2 depicts this simplified situation. There are
two important parameters that have to be considered when a failure occurs.
First, how much time does it take for the system to recover from the failure?
This period of time is called system recovery time. For the duration of the
system recovery time, the performance of the system is at its lowest level.
Therefore, a good recovery mechanism has to minimize this time period.
Second, how much is the performance of the system degraded for the duration of
the system recovery? The performance overhead factor includes both the normal
operation overhead and the failure recovery overhead.

A more realistic situation is depicted in Figure 2-3. The system
operates normally until a fault occurs and some component of the system
becomes inoperative. The system executes recovery procedures and operates at
reduced capacity. After the recovery procedures are executed, the performance
rises to a level below full system performance. Later, the fault is cleared
and the system executes recovery procedures to restore the consistency of
global system state. During this time, performance is again degraded.
Finally, throughput is restored to the normal level.

This view introduces additional effective measures: Reduced
configuration overhead is the difference between ideal performance and
performance while part of the system is inoperative. Reconfiguration recovery
overhead is the difference between ideal performance and performance while
global system state is being restored. Reconfiguration time is the duration
of this processing.

Cost is another important factor in deciding which recovery mechanisms
should be included in a distributed system. Cost may be measured in terms of
the additional hardware resources required to implement a recovery mechanism
while maintaining the same level of performance as without the recovery
mechanisms. This includes the cost of additional primary and secondary
storage and processing power. The memory requirement is derived from the size
of the recovery mechanism procedures and the size of any additional data
structures. The secondary storage requirements may be further increased if
they are required to store multiple copies of objects. The additional
processing overhead is derived from the performance overhead previously
discussed. Another way to characterize the overhead due to recovery
mechanisms is in terms of reduction in response time and throughput.
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2.5 Summary

The system designers guidebook presents the results of our study of
functional requirements of distributed command and control systems. In
designing such systems it is important to understand their operational
environment in order to define the performance and reliability requirements.
Distributed system architectures seem to be the most ideal and natural choice
for implementing the future command and control systems. This is due to the
fact that such architectures support integration of geographically dispersed
processing elements Into one coherent monolithic system. This integration is
achieved by a distributed operating system which provides mechanisms for
managing distributed resources in the system. Transparency of resources and
the recovery mechanisms for the resource management functions are two
important attributes of an ideal distributed operating system. Introduction
of recovery mechanisms introduces certain performance penalties such as
reduced throughput and response time because of extra resources and CPU cycles
required for maintaining additional system state needed for recovery.
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CHAPTER 3

INTEGRITY MECHANISMS

The operating conditions that exist in a distributed system define
requirements for the consistency and reliability management techniques. These
conditions include concurrent operations and component failures. Concurrent
operations may access common data and inadvertently compromise the integrity
of the data. If there are multiple copies of data, the problem of concurrent
access must address the issue of the interdependency of the copies values.
Whenever components fail or if users are permitted to abort operations all
other sites that are executing a part of the operation must be informed and
data restored to a consistent state. If a user's computation is dependent on
an intermediate value of a failed or aborted computation, the dependent
computation may also have to be rolled back. It is possible that a cascade of
rollbacks, a domino effect, may occur.

The consistency requirements in a distributed system are characterized by
four criteria. The first criterion, internal consistency, is the semantic
integrity of the data. The second criterion, mutual consistency, is the
relation between the copies of replicated distributed data. One example of a
mutual consistency requirement is that all copies of a replicated data
converge to the same value sometime after the updating of data is stopped.
The third criterion, external consistency, is the relation of the system
interactions with the users. For example, if a user invoking a transaction is
given a response indicating successful completion, then the updates made by
the transaction must be reflected in the database. The external consistency
requirements are dependent upon the definition of the user-system interface.
Interactive consistency [LAMP82], the fourth criterion, requires that all
correctly functioning nodes in the system have an identical view of the system
despite the malfunctioning of some nodes. This is also known as the Byzantine
Generals Problem.

The key principles for designing reliable systems are the atomicity of
transactions and the management of redundant components. A transaction is a
set of primitive operations on data that appears to be executed as an
indivisible operation. A transactions implementation in a distributed system
requires a protocol by which a collection of processes may reliably decide to
make permanent (i.e. commit") its effects. Transactions provide a common
work unit for the problems of error recovery and synchronization. The
techniques to solve these two problems in a design interact closely with each
other because of the need to maintain recoverable consistent states.
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Management of redundancy in the system in the form of replication of
objects or creation of backup objects is important for supporting continued
operations in the event of loss of resources. The major problem in redundancy
management is the maintenance of consistency among replicated objects, and the
maintenance of sufficient up-to-date state information with the backup modules
to support reconfiguration. Several strategies may be used to manage such
state information, for example keeping a majority or a survivable set of the
replicated units in a consistent state.

This chapter introduces the terminology, concepts, and issues involved in
consistency and reliability management techniques. The details of the
algorithms for implementing the techniques are contained within the system
designers guidebook.

3.1 Consistency Management In Distributed Systems

The goal of concurrency control techniques is to maintain mutual,
internal, and external consistency requirements of shared data and to maximize
the throughput of access to the data. The techniques used for maintaining
consistency of data under concurrent update operations consist of four tasks.
The first is to assign an order to all the transactions. The second is to
identify conflicting transactions and conflicts. The third is to realize the
inter-site synchronization required to achieve this order for the conflicting
transactions. The fourth is to achieve ,the required intra-site
synchronization. The schedule produced may be serializable or
non-serializable. A serializable schedule means that the final effect of
executing interleaved operations of concurrent transactions on tne database is
equivalent to some serial execution order of those transactions. A
non-serializable scheduler seeks to increase the concurrency between
transactions by examining the semantics of operations. A serializable
scheduler uses only the syntax of a transaction. Almost all systems to date
use serializab3 schedulers. There are three basic techniques to achieve
serial consistency: timestamps, locks, and optimistic.

3.1.1 Timestamp Based Protocols

In timestamp-based protocols, every transaction and every data item is
assigned a globally uniqus timestamp. The timestamp of the datum is equal to
the timestamp of the last transaction that accessed the datum. To access a
datum, a transaction sends its timestamp and the type of operation (e.g., read
or write) to the site where the datum resides. In order to serialize requests
and resolve conflicts a scheduler at the site where the datum resides uses a
rule to compare the timestamp and operation request of the transaction with
the timestamp of the datum.

A number of timestamp based protocols have been proposed. In general,
the greater the amount of concurrency permitted, the greater the probability
that an operation may be rejected and a transaction restarted. Basic
timestamp-ordering and conservative timestamp-ordering are the endpoints of a
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spectrum. Basic timestamp-ordering delays operations very little, but it
tends to reject many operations. It schedules a transaction's operation if
its timestamp is greater than the timestamp of the datum. Conservative
timestamp-ordering never rejects operations, but it tends to delay them often.
It requires that a scheduler have an operation request from every other node
before a request is granted. Since it has a request from all nodes, it can
safely allow the request with the smallest timestamp to proceed.

3.1.2 Locking Protocols

In locking protocols, a transaction requests a lock on an object,
operates on the object only when it has been granted a lock, and releases the
lock on the object when it no longer needs the object. The exact time that a
transaction releases a lock is dependent on how the logical database is
organized. If the logical database has the structure of a directed graph a
transaction may release an object as soon as its operation on the datum is
completed, otherwise it must wait until there are no other locks to be
acquired. The latter case is called two-phase locking and the former non
two-phase locking.

Two-Phase Locking Protocols

A two-phase locking protocol specifies that in each transaction all the
locking operations must precede any unlocking operation, and all transactions
must be well-formed. A well-formed transaction acquires locks on objects
before accessing them. It has been shown in (ESWA76] that if all transactions
follow the two-phase locking protocol, then the schedules of their executions
are serializable. In the two-phase locking it is easy to see that deadlocks
are possible. To avoid deadlocks we could set an order to all the entities
and stipulate that all the transactions request locks only in the set order.
Alternatively, when a transaction has been permitted to start executing, it
may put intention locks on all the entities it would ever need. These locks
may be used to rule out the possibility of a deadlock before permitting any
other transaction to set its intention locks.

Another approach to ensure deadlock freedom is to add a deadlock
prevention scheme to the locking scheme. Rosenkrantz, et al., CROSE781 have
proposed two such deadlock prevention schemes. Timestamps are assigned to
transactions and are used as priorities in determining what to do when a
transaction requests a lock on an object that is already locked. In the
Wait-Die scheme, an older transaction waits on the completion of a younger
transaction that holds a resource that the older transaction requests; but a
younger transaction that requests a resource held by an older transaction is
forced to restart. In the Wound-Wait scheme, an older transaction waits on a
younger transaction only if the younger transaction has started its
termination; otherwise, the younger transaction is restarted. A younger
transaction is allowed to wait on an older transaction.

The Wait-Die scheme has the disadvantage that a younger transaction may
restart and die several times before completing successfully. The restarts
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will consume some of the system resources. However, this scheme has the
advantage over the Wound-Wait scheme that after a transaction has acquired all
of the resources it needs, it can not be pre-empted and restarted. In the
Wound-Wait scheme, even when a transaction has locked all the resources it
needs, but has not yet initiated its termination, it is possible that for it
to be wounded and forced to restart.

Non-Two-Phase Locking

Only a few protocols have been proposed that are not two-phase locking.
One of these, proposed in [SILB81] presumes a tree-structured, hierarchically
organized database. Transactions must be well formed and locks are acquired
as follows. A transaction Ti may initially request a lock at any node (e.g.,
entity). Subsequent lock requests may be made only for direct descendants of
nodes for which Ti already has a lock. When a lock is released, it may not be
reacquired. The schedules produced by this protocol are serializable and,
unlike the two-phase locking protocols, are deadlock free. An intuitive
understanding of this fact is straightforward. Each transaction has a
frontier of lowest nodes in the tree on which it holds the locks. The
protocol guarantees that these frontiers do not overlap. If the frontier of
Ti begins above the frontier of Tj, it will remain so, and every Item to be
locked by both will be locked by Tj first.

When locks are used in a distributed system a number of additional
considerations arise. Among them are is global synchronization required to
lock an object, how is an object globally synchronized, how can global
synchronization be achieved with a minimal number of messages, and how can any
one node be kept from becoming a performance bottleneck and a single point of
failure. These issues are discussed at length in the system designers
guidebook.

3.1.3 Optimistic Concurrency Control

The optimistic method for concurrency control CKUNG81] hopes that
transaction conflict is rare and that concurrency can be increased by
eliminating locks and their associated overhead. Every transaction goes
through three phases -- read, validation, and write. During the read phase, a
transaction reads objects, creates local copies of the objects, and updates
the local copies. The validation phase determines if the operations of a
transaction conflict with those of another transaction and violate serial
consistency requirements. If the test fails, the transaction is aborted.
Otherwise a transaction enters a write phase where its updates are made
permanent or the results of a query are displayed.

In order to ensure the serializability of the transaction, each
transaction is assigned a unique integer and the transactions are serialized
according to their assigned numbers. The validation nrocedure ensures that
one of the following three conditions holds: 1) a transaction, Ti, with a
smaller assigned number completes its write phase before a transaction, Tj,
with a larger assigned number starts its read phase; 2)the write set of Ti
does not intersect the read set of Tj, and Ti completes its write phase before
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TJ starts its write phase; and 3)the write set of Ti does not intersect the
read set or the write set of TJ and TI completes its read phase before TJ
completes its read phase.

Condition (1) states that Ti actually completes before TJ starts.
Condition (2) states that the writes of Ti do not affect the read phase of TJ,
and that Ti finishes writing before TJ starts writing, hence does not
overwrite Tj (also, note that Tj cannot affect the read phase of Ti).
Finally, condition (3) is similar to condition (2) but does not require that
Ti finish writing before Tj starts writing; it simply requires that TI not
affect the read phase or the write phase of TJ (again note that TJ cannot
affect the read phase of Ti, by the last part of the condition).

The transactions are assigned their transaction numbers after they
complete the read phase to avoid the possibility of a more recent transaction
with a short read phase being blocked by an earlier transaction with a long
read phase. This scheme of assigning transaction numbers does not require the
validation of condition (3) above.

3.1.4 Basic Timestamp Ordering Versus Locking

Timestamp ordering In centralized systems tends to behave very similar to
locking but has the disadvantage of inducing larger numbers of restarts. This
is because the timestamp ordering scheme a priori determines the serialization
order. What may appear to be a transaction conflict that induces a restart
based on timestamp ordering may not be a conflict using locking and optimistic
methods. For example, if a transaction with a larger timestamp reads an
object and completes before a transaction with a smaller timestamp writes the
same object, the transaction with the smaller timestamp will be aborted.
Locking and optimistic schemes would allow both transactions to complete
successfully.

Locks are required to implement critical sections In both timestamp
ordering and optimistic schemes. For example, locks are required while
reading and updating the timestamps associated with the objects. More
importantly, in the timestamp ordering scheme some form of logical locking is
required to prevent triggered aborts. Such a situation arises when a more
recent transaction is allowed to read objects that have been updated by a
transaction that is uncommitted and later aborts. The more recent transaction
is also aborted. To prevent such a situation, access to an updated object by
other transactions is blocked until the updating transaction either commits or
aborts. This is equivalent to holding a write lock on the object. It should
be noted here that the optimistic scheme avoids locking and accepts the
possibility of transaction aborts.
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3.1.5 Non-Serial Consistency

It is only recently that researchers [GARC83b] [FISH82] (BLAU83] have
started investigating consistency management techniques that exploit the
semantic knowledge of the database during concurrency. Such a knowledge can
lead to certain acceptable schedules that are not serializable. This area of
research is relatively unexplored.

In [GARC83b) Garcia-Molina investigates how the semantic knowledge of an
application can be used in a distributed database to process transactions
efficiently and to avoid some of the delays associated with failures. In
[GARC83], the main idea is to allow nonserializable schedules which preserve
consistency and which are acceptable to the system users. To produce such
schedules, the transaction processing mechanism receives semantic information
from the users in the form of transaction semantic types, a division of
transactions into steps, compatibility sets, and countersteps. Using these
notions, in [GARC83], a mechanism is proposed which allows users to exploit
their semantic knowledge in an organized fashion.

3.2 Reliability Techniques In Distributed Systems

In this section we review various error recovery techniques and their
applicability In distributed systems. Our discussion of recovery techniques
starts with a brief overview of the concepts and definitions In this area.
Detailed discussions of these concepts and definitions can be found in some of
the surveys, [RAND78] [KOHL81] [VERH78], in this area.

A system is said to have failed when it no longer meets its specifications.
The transition into the failed state is characterized by the failure event.
The term error is used to characterize an incorrect system such that any
further computation activity using the normal algorithms would result in a
failure of the system. A fault is the mechanical or algorithmic malfunction
(i.e., failure) of a system component that may cause an erroneous state.

All reliability techniques are based on adding redundancy in the system
to support recovery from errors and continued operation. This is called
protective redundancy. It is manifested in a system as additional components,
data, and algorithms. This section discusses the additional components, data,
and algorithms necessary to do error detection and recovery in a distributed
system.

3.2.1 Error Detection Techniques

The purpose of error detection techniques is to detect the erroneous
states of the system that could lead to system failures. Some general
techniques for error detection (ANDE79] are described below.

20



INTEGRITY MECHANISMS

(a) Replication Checks: In such schemes, an activity is replicated and the
results from replicated activities are checked for consistency. An
inconsistency among results indicates a possible error condition. Errors
can be masked by majority voting as in Triple Modular Redundant systems.

(b) Reversal Checks: They involve application of inverse computation to
check what the input to the system should have been. The calculated
input and the actual input are compared for consistency.

(c) Coding Checks: They are the most popular error detection technique.
Redundant information in the form of checksum or parity is associated
with objects to detect erroneous states.

(d) Acceptance Tests/Consistency Checks: At certain well-defined points in
the execution, tests are applied to the objects that define the state at
that point. Such tests ensure that the state at that point conforms to
certain specifications. Any inconsistencies imply an erroneous state.
Consistency checks can also be applied to some mutilated data structures
that are reconstructed on recovery.

(e) Interface Tests: These tests ensure that the interactions among system
components meet certain acceptance criteria. Tests are applied to the
parameters and the results of interface functions. Such tests limit
propagation of errors from one component to another through the
interfaces. The confinement of errors is strongly dependent on how
rigorous the acceptance tests are. In distributed systems, interfaces
provide well-defined and controlled means for the propagation of
exception conditions between modules. If the interface function
execution encounters error conditions, then an error condition is
returned to the caller through the interface.

(f) Diagnostic Checks: In such techniques, explicit tests are conducted on
system components for which expected outputs for given test inputs are
known. The failures of components to be tested and the components
conducting the tests should be independent. As pointed out In [ANDE79],
diagnostic tests are rarely used as a primary error detection mechanism,
rather used as a supplement to other detection mechanisms.

(g) Interval Timer/Time-Out Mechanisms: In distributed systems, time-out
techniques are frequently used to detect possible error conditions. A
process invoking a remote operation waits for a certain specified period
(called the time-out period) to receive the response. If no response is
received within this period, then an exception condition is raised and
appropriate forward error recovery is initiated.

3.2.2 Error Recovery Techniques

Recovery techniques involve the generation of consistent system states.
There are two categories of techniques: backward error recovery and forward
error recovery. Backward error recovery techniques save prior consistent
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states in an execution history. When an error is detected recovery involves
restoring a computation to a saved prior consistent state.
Checkpoint/rollback is typical of these techniques. The forward error
recovery techniques use the present computation and error state to arrive at a
new consistent state. They are typified by programming language exception
handlers. The techniques in the latter category are application dependent,
while those in the former are application independent. We will restrict our
discussion to backward error recovery techniques.

3.2.2.1 Checkpointing and Rollback

In this technique, the state of the process is saved on a stable storage
as a checkpoint. A checkpoint is a backup version of the complete execution
environment of the process. When the system is recovering from an error a
checkpoint of the system (e.g., the state of all processes executing at a
given time) is loaded and restarted.

The rollback of a process in a system of communicating processes may
cause rollback of other processes. This happens when a process that is rolled
back to a previous checkpoint has communicated some information to some other
processes after establishing that checkpoint. Thus, all messages sent after
that checkpoint are revoked, and all activities performed by the recipient
processes after receiving such messages are invalid; this causes all recipient
processes to also roll back to their respective checkpoints established before
receiving these messages. This can cause a cascade of rollback activities, a
phenomenon referred to as the domino effect. The domino effect can be avoided
if the way that processes interact is controlled. One way is to restrict
process interaction to accessing shared objects within the context of a
transaction and the appropriate concurrency control and commit protocols.

3.2.2.2 Careful Replacement

A key issue in the development of reliable systems is the saving of
consistent system states. The state of a system evolves in a number of
volatile main memory pages. At some point in time, a consistent state is to
be saved on non-volatile storage. The problem arises as to how to update the
version of the system state on the non-volatile storage in such a way that if
a crash was to occur in the midst of the update there would be a consistent
system state available on the non-volatile storage when recovery begins.

The main issue is how pages on volatile storage are mapped to pages on
non-volatile storage. There are two possible mappings -- direct and indirect.
In direct mapping there is a one-to-one relationship between volatile and
non-volatile storage pages. Objects are updated "in place." If a crash
occurs in the midst of an update, an inconsistent state may exist. Indirect
mapping uses techniques that aviod a one-to-one relationship.

The careful replacement technique updates a copy of the original object.
The original copy, also called the "shadow" copy, remains unaffected in case
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of failures during the updating procedure. Only on commitment is the shadow
copy replaced by the updated copy.

An example of this technique is the scheme proposed by Lampson and
Sturgis [LAHP81] for making page write operations atomic in order to implement
a stable storage facility. The Put and Get operations on a physical disk are
not atomic in the sense that a crash of the system during the put operation
for a page may leave that page only partially updated. A CarefulPut operation
is defined to ensure that a put operation completes successfully provided no
processor or disk crash occurs. A CarefulPut operation repeatedly writes a
page and reads it until either it puts a clean page or some prescribed bound
is exceeded. Similarly, a careful get operation reads a page repeatedly until
either it gets a clean page or some prescribed bound is exceeded.

A Cleanup operation periodically checks the status of two pages; if one
of the pages is corrupted and the other page is in good state, then the
cleanup procedure replaces the contents of the corrupted page by the contents
of the good page. This operation is periodically applied to each StablePage
in the system. If Tc is the period of invoking the cleanup procedure, then
for a StablePage to be reliable and highly available the period Tc must be
small enough so that the probability of both DiskPages of a StablePage getting
corrupted is infinitesimally small.

A StablePage is constructed from two disk-pages by procedures that use the
CarefulGet and CarefulPut operations. A StablePut operation writes a
StabePage by calling CarefulPut to write a main memory page to a disk page
once and then calling CarefulPut write the same main memory page to a
different disk page. StableGet is defined similarly by using CarefulGet.

Another example of careful replacement is the use of a shadow copy of an
object that consists of multiple pages to facilitate recovery. A current
version and shadow version of the object are maintained. The updates from an
uncommitted transaction affect only the current version of the object. On
transaction commitment, the current version is made the shadow version,
thereby making the updates permanent. On transaction abort, the current
version is deleted and the shadow version is made the most current version.
The operation of replacing the shadow version by the current version must be
atomic and done in one instruction. The technique described below [LORI77]
does this.

Suppose that an object is represented by a set of StablePages [P1,...Pn}
in the stable storage. The pages of the object are mapped from main memory to
disk via a page table that has one entry per page. The old version of the
object is preserved in a shadow page table that points to the pages of the
shadow version. The current page table is initially set to the shadow page
table to facilitate reading the object. Updates to pages of the object are
noted in the current page table. When the current version of the object is to
be written to stable storage, any pages of the object that have been updated
are written to new disk pages using StablePut, the current page table is
updated to show the mapping, and then the current page table Is written to
disk using StablePut. Any crash during the execution of this procedure, but
before the completion of the last StablePut operation will abort the
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transaction. Successful completion of the last StablePut operation implies

permanence of the updates.

3.2.2.3 Logs/Audit Trail

In this technique, actions performed on an object are recorded in a log
or audit trail. The purpose of the logs is to support either undo of the
logged action for state rollback, or redo the logged action to ensure
permanence of results produced by committed transactions. Logs/audit-trails
are used to either restore an object to a state prior to executing a sequence
of operations on it or to ensure the permanence of the effect of executing a
sequence of operations on it. The logs that facilitate object state recovery
record the undo operation corresponding to every action performed on an
object, and the logs that are used to ensure permanence of effect record the
redo operation for every operation performed on the object. An undo record
for an operation on an object specifies the actions to be executed to nullify
the effect of executing that operation on the object. A redo record for an
operation basically records the actions performed by the operation.

Logs that contain the redo actions are called the forward logs, and the
logs that record the undo actions are called the backward logs. The backward
logs either record the inverse operations or the values of the object before
the application of the logged action. During a recovery process, a backward
log is used by scanning it backwards for undoing actions in a last-in,
first-out fashion. Thus a backward log can be viewed as a push-down stack.
During system recovery, a forward log is scanned in the FIFO order as a queue.

A forward log is said to be idempotent if any number of (complete or
aborted) repeated executions of the log from the beginning leave the updated
objects in the same state. Such logs are also referred to as intention lists.
One way to implement forward logs is to use differential files. In this
technique, all updates to an object are recorded on a differential file. The
updates from the differential file are periodically merged into the main copy
of the object and such updates are then deleted from the differential file.
The differential file technique provides a relatively inexpensive means of
maintaining multiple versions of a large object. Intentions lists and forward
logs are forms of differential files containing redo actions that record the
new values of the objects and have the property of idempotency. The property
of idempotency implies that repeated executions (some of which may be
incomplete) of this sequence of actions would always bring the updated object
to the same state.

The backward log technique is used when changes are made in-place in the
stable storage. The recovery techniques based on backward logs follow the
write-ahead-rule: (1) Before performing an operation in-place on an object,
record the corresponding UNDO action in the log and force the log on the
stable storage; (2) Before committing a transaction (i.e., sending a commit
response to the user), either the updated versions of the objects or the
corresponding forward logs must be forced on the stable storage. This rule
makes sure that if the system crashes or the transaction aborts, the backward
log can provide a means for restoring the object which has been updated
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in-place. Similarly, for a committed transaction, the updates made by it are
guaranteed to be made permanent by using the forward logs.

3.2.2.4 Commit Protocols and Atomic Actions

Commit protocols are used for implementing atomic actions in a
distributed system. The commit protocols enforce the atomicity of
transactions in the presence of node crashes and communication link failures.
The concept of commit protocols was independently introduced by Gray [GRAY79],
and Lampson and Sturgis (LAMP761.

A transaction begins execution at a single node. When an operation is to
be performed on objects at remote nodes a worker process, or cohort, is
initiated at that node. When the operations of the transaction have been
executed the processes execute a commit protocol to ensure that either all of
the processes decide to commit or to abort the transaction. If the
transaction commits, the updates are made permanent; otherwise, the objects
are released in the state that they were in prior to the transaction's
execution. This maintains database consistency by ensuring the
"all-or-nothing" property of the global transaction.

The design of a commit protocol must address a number of issues. A
decision must be made as to whether the control of the commit protocol is to
be centralized or decentralized. If it is centralized, how a commit
coordinator is determined must be defined. If it is decentralized, an
efficient solution that minimizes messages must be devised. For both cases,
what actions are taken if a failure occurs can impact system integrity and
performance. If a failure occurs, a commit protocol could either cause all
further access to an object to be blocked or not blocked. Ideally, the period
of time that an object is in a locked state that is vulnerable to a failure
should be minimized. Some of the desirable characteristics for a commit
protocol are: 1) guaranteed transaction atomicity, 2) minimal overhead in
terms of log writes, 3) optimized performance in no-failure case, 4) ability
to "forget" the outcome of commit processing after a while, and
5) exploitation of read-only transactions [MOKA83.

A number of commit protocols have been proposed. The most common are
one-phase and two-phase. They are both centralized, blocking protocols. The
major difference between them is the length of time during which a cohort is
vulnerable to the failure of a coordinator. How these and other commit
protocols address the above mentioned issues are discussed in detail in the
system designers guidebook.

3.2.2.5 Replication Management in Distributed Systems

A distributed computer system can offer benefits if objects are
replicated and their management adjusted to take advantage of the multiple
copies. The benefits can include improvements in performance and reliability.
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The former is j ssible due to the reduction in communication cost to access an
object and the increase in parallelism of operations on an object. The latter
is possible because operations can continue despite the loss of system
components. For example, if a directory is replicated on every site on a
distributed system, the cost of reading it is the cost of accessing a local
storage device (e.g., there is no overhead incurred due to communication
between two sites). It is possible for users on multiple sites to be
simultaneously accessing the directory, further improving a system's
performance. Finally, if a site fails, the directory can still be accessed by
any operating sites.

Unfortunately, increases in reliability and performance do not come for
free and in many cases are not mutually attainable. This tradeoff in system
attributes is often determined by a correctness criterion that describes a
relationship between the values of the replicas of a distributed object at any
point in time. The correctness criteria must ensure that a replication update
algorithm satisfies the mutual consistency property: all replicas of an
object converge to the same state and become identical if update operations
cease.

The most common requirement of consistency has been based on the notion
of serializability of transactions -- the effect of the execution of a set of
transactions is equivalent to some serial schedule. This is called a strong
consistency requirement. It requires that some subset of the set of copies of
an object converge to a common state within the time it takes for a single
transaction's execution.

A different requirement for consistency may be derived from observing
applications such as directories, calendars, or network resource tables. The
use of these objects does not require that they have the most up-to-date
information. For example, a network name server may access an object's old
site and be directed to its new site, or a message may be routed through a
network over a longer than optimal path because its routing table is slightly
out of date. But the services may be achieved with using non-identical copies
of an object. The consistency requirement for them is that they must
eventually converge to a common state if changes Co the object stop. This
convergence may span the time it takes for multiple transactions to execute.
This correctness criteria is called weak consistency. It is a property of the
application.

A third correctness criteria related to consistency exists. It is called
semantic consistency and is a property of a set of transactions of an
application. Semantic consistency seeks to find relationships (e.g.,
commutative, inverses, etc). between the effects of transactions that allow
them to be executed according to a non-serializable schedule. To the best of
our knowledge, semantic consistency has not been applied to performing updates
on replicated objects. However, it has been proposed as a technique for
merging replicated objects that existed in different network partitions when
the partition is repaired.

In some sense, consistency criteria can be seen as points on a spectrum
differentiated by the amount and type of activity that may occur in a system
at any point in time. The three consistency criteria discussed are points in
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this spectrum that are currently known and are not meant to be interpreted as
the only possible criteria.

The problem of managing replicated objects can be divided into four parts
-- normal operation, detecting a failure and transitioning into a degraded
mode of operation, operating in a degraded mode, and merging partitions during
recovery. The first and third part of the problem are the same problem but in
a different operating environment. They are almost always addressed by a
single mechanism and will be discussed as a single problem in this paper.
Transitioning into a degraded mode has two subparts -- termination and
recovery. Termination is the action taken by operational sites when they
determine that a site has failed and effects a transaction. Recovery is the

action taken by a site to clean up any existing, uncompleted transactions when
it becomes operational after previously failing. Finally, merging is when a

set of sites acts to bring multiple copies of an object into a consistent

state. It is helpful to recognize these distinct parts in order to understand

the advantages, disadvantages, and applicability of the algorithms to be

discussed.

A number of algorithms have been designed to ensure that the copies of an

object meet some consistency correctness criteria. The system designers

guidebook discusses how some of these algorithms operate and their effect
under normal and degraded operation. Degraded operation exists when either a
site goes down, a communication link is lost, a network is partitioned, or a

message is lost or duplicated. Some update algorithms are tolerant of some of
these failures and have no explicit distinction between normal and degraded
operation. Other algorithms cannot tolerate failures and may block an

operation until recovery from the failure has been completed, or abort the

operation.

An attribute of interest is availability: the probability that an object
can be accessed and an operation successfully performed. Those algorithms

that ensure weak consistency result in a higher availability of objects.
Strong consistency requirements typically restrict the concurrency level to a
single update transaction and multiple read only transactions. They further
restrict access to the replicated object by only one partition during degraded
operation.

There are some general relationships among a replication algorithm's
distribution of control, consistency criteria, reliability, and performance.
Centralized control supports strong consistency and freedom from deadlock
well, but is susceptible to single points of failure. It potentially can

create performance problems (bottlenecks) and thereby reduce the availability
of an object under both normal and degraded operation. Decentralized control

can potentially increase the throughput of a system and the tolerance of a
system to single point failures. Weak consistency is not appropriate for

centralized control; it is naturally achieved through decentralized control.
Weak consistency increases a site's throughput and response time, an object's
availability, and a system's resilience to multiple failures.
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3.2.2.6 Network Partitioning and Continued Operations

Under the conditions of network partitioning, allowing sites to update a
replicated database, some copies of which are in an inaccessible partition,
may result in inconsistency among the copies. This inconsistency among the
copies requires resolving when the partition is repaired. In [BLAU83] two
schemes, called Data Patch and Log Transformation, have been proposed for
integrating the inconsistent copies of the database. The technique called
Data Patch [GARC83a] relies on the data values and the semantic knowledge of
the database. The technique of Log Transformation uses the logs of the
transactions executed during network partitioning for the integration purpose.

Data Patch is an example of the forward error recovery technique. In
this approach the data values before the partition and the data values at
different sites after the partition are examined during the partition repair
time. Depending on various different criteria and consistency requirements,
the final merged value of the data is determined. The criteria and techniques
for determining the repaired values are determined at the time of the database
design; the database administrator uses tools based on these policies to
integrate different copies of the database during the partition repair.

The usefulness of the data-patch technique strongly depends on a thorough
understanding of the application environment. This technique fails to deal
with network partitioning during integration. Data-patch allows ad hoc
updates, but such updates require restrictions to keep the integration rules
appropriate. As new transaction types are added, the integration rules must
be updated appropriately. The compensating actions that require only the
database values at the merge time are efficient to execute compared to those
actions which require examination of the execution logs to determine which
transactions generated these data values.

Log transformation relies on the logs of transaction executions at
different sites for merging the partitioned copies of a database. This
technique does not make use of the data values at the merge time. It assumes
that all transactions are pre-defined and it requires that a database
administrator specify the semantic properties and relationships between the
transaction types. For example, transaction Ti and T2 commute, or transaction
T2 overwrites all data written by Ti. The transaction logs are merged
according to these rules and other rules that apply integrity constraint
checks.

During the partition merge time, the execution logs from each partition
are exchanged and new merge logs are built. In constructing merge logs some
conflicting transactions are undone and re-run. The merge logs are generated
independently at each site; therefore, they may be different at different
sites. However, the log transformation technique assumes that there is a
system-wide policy to re-order conflicting transactions. One possible
criterion for determining the order of execution for transactions in the
merged logs is their execution time.

The applicability and usefulness of the log-transformation technique is
dependent on the application. As in case of data-patch, the transactions in
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the system are of pre-defined types. As new transaction types are added to
the system, necessary information is required to support correct operations of
this technique.

3.3 Summary

In distributed systems, the operating conditions that may arise due to
concurrency and component failures strongly influence the consistency
management techniques. This is shown in Figure 3-1. Concurrency of
operations requires techniques to maintain mutual, internal, and external
consistency requirements. Depending on these consistency requirements,
serializability of transactions may be a necessary requirement for the
consistency management techniques; therefore the consistency requirements have
been further divided into two classes: those that require serializability as
a necessary requirement, and those that do not require serializability. The
concurrency control techniques to ensure serializability are based on locking,
time-stamp, or optimistic protouols. Most of the work in the area of
consistency management has been in the context of maintaining serial
consistency of distributed, replicated or partitioned databases. Not many
researchers have addressed the consistency requirements that permit
non-serializable interleaved executions of transactions. Applications with
such consistency requirements can be important If continued operations are to
be permitted in spite of network partitioning.
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The component failures have been divided into two classes: silent
failures and malicious failures. Silent failure of a component means that the
failed component does not generate or forward any information. In a malicious
failure, the failed component may generate wrong messages or distort the
messages it forwards. Silent failures of components affect the internal,
mutual, and external consistency in the system. The techniques for
maintaining system consistency under such failures are based on the concept of
atomic actions. The problem of interactive consistency arises in the presence
of malicious failures of components. The solutions to such problems are based
on the solution to the Byzantine Generals' problem.
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CHAPTER 4

ABSTRACT DISTRIBUTED SYSTEM ARCHITECTURE

The architectural features of distributed systems offer a great potential
for designing reliable systems because the physical isolation between system
components can reduce the correlation among component failures, and the
redundancy of resources can support continued operations in the event of
failures. Reliability and consistency management techniques provide the
building blocks from which reliable distributed systems are built. However,
this potential has largely remained unexploited because of the lack of a
formal discipline to integrate the existing and known recovery techniques into
the designs of distributed systems. This chapter presents an object-oriented
design model for distributed systems which facilitates a systematic and
well-structured integration of known recovery and consistency management
techniques into the designs of distributed systems. We first discuss some of
the techniques that can be used for structuring systems. Next a design model
for reliable distributed systems is presented with a discussion of how the
reliability and consistency management techniques described in Chapter 3 can
be used to implement the functions of the design model. Finally, a system
structure that combines the design model with object oriented design
techniques is presented.

4.1 System Structuring Concepts

Much of the recent research in reliable system design is actually
exploration into system structuring techniques. distributed systems are
intrinsically more complex than centralized systems. A structured approach
reduces design complexity. by factoring the designs into layers that create
different levels of functional abstraction; the design of each layer can then
be carried out somewhat independently of the design of the other layers. The
layers in the system can be viewed as creating horizontal partitions in the
system design.

Another structuring concept, which is dual as well as orthogonal to a
layered approach, is object-orientation which creates vertical partitions in
the system. The interactions between these partitions occur through some
well-defined interfaces; thus, each partition in the system represents an
independent domain where the internal structure of a domain can not be
directly accessed by other domains. A vertical partition essentially embodies
the concept of objects in the system. The whole system is viewed as a
collection of objects. All state transformations in one partition by other
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partitions are performed through the interfaces defined by the partition. The
advantage of such an approach is that the design of the internal structure of
any given partition is independent of the designs of other partitions. These
are the fundamental principles of data abstraction. From the viewpoint of
reliable system design, such an approach is very attractive because it
supports confinement of errors within an object boundary. This also implies
that the recovery mechansims for a given partition can be designed to suit its
reliability requirements.

There ire two distinct approaches to designing reliable systems. The
traditional approach takes a process-oriented view of the system where objects
are bound to the address space of a process at the time of process creation
and execution. The process is responsible for maintaining the integrity of
these objects in the presence of faults and system crashes, and for recovering
its locus of execution in the presence of faults. This approach uses
checkpointing and rollback as primary recovery mechanisms for constructing
resilient processes. Most previous operating systems have used system-wide
checkpointing, saving the state of all processes in the system, irrespective
of need. The research in this area has addressed the problems of separately
checkpointing interacting concurrent processes [KIM79) [RUS380]. The major
problem is to avoid a domino effect in which the rollback of one process may
lead to a cascade of rollbacks.

A second, more recent, approach, takes an object-oriented view of systems
LISK82]. In this view, objects are of distinct types; each type provides a
defined set of externally visible operations. Each object is permanently
bound to the address space of its object manager. Processes act upon these
objects by invoking the visible operations implemented by an object manager.
The object manager is responsible for enforcing necessary concurrency control
rules and recovering objects from faults and system crashes. The primary
recovery mechanisms include forward/backward logs, careful replacement, and
object replication [KOHL81]. Processes are no longer responsible for
recovering the objects they access during their execution; however, they are
still responsible for recovering their execution locus. This requires
establishing recovery points, and rolling back a process to some recovery
point. A major advantage of the object-oriented approach is the clean
separation between the recovery functions for processes and objects. Another
advantage is that, for each object type, the recovery mechanisms and their
design parameters can be selected to match the type's integrity requirements.

4.2 A Design Model For Reliable Distributed Systems

A design model for the construction of reliable distributed systems is
shown in Figure 4-1. This model has been inspired by Lampson's lattice model
[LAMP81a) for reliable distributed systems. The objective of reliable
distributed system designs is to synthesize secure and stable distributed
objects that survive crashes of system components and support high
availability of functions. Such objects are constructed using unreliable
resources such as physical storage (disks), physical processors, and the
communication media. This section describes the design model in a bottom-up
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fashion. The properties of each functional abstraction in the model and Umh
recovery mechanisms that can achieve these properties are Identified.

The physical storage refers to non-volatile disk storage that has a
non-zero probability of Ilnformation loss. For example, a page on a disk say
get corrupted due to a bead-crash or so. other malfunction. Another problem
with the physical storage is the non-atomicity of write operations on pages.
For example, a crash may occur In the disk system during writing a new value
on a page. This leaves the page In an undefined state because the old value
has been destroyed and the new value has not been written completely.

The stable storae facility, which Is constructed from the physical disk
storage, provides atomic write operations on pages. It enhances the
availability of data by increasing the meen-time-to-fallure of a disk Page.
Lampson Introduced a technique for constructing stable storage from unreliable
disc storage facility (LA 1a]. It is based on careful replaqceent.
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checkpointing. Processes are considered as objects that are supported by a
stable processor facility.

The next level of abstraction provides secure and stable objects based on
stable storage, stable processor and unique identifier (UID) facilities.
Stable objects are those that survive system crashes with a high probability
and for which the primitive operations (i.e., the operations supported by the
type definition) are atomic. Secure objects are protected objects which can
only be accessed by authorized users.

Every object in the system is given a globally unique name using the UID
facility. This name is never reused in the entire life-time of the system.
From this unique identifier, the type of the object can be inferred. The UID
also contains the identification of the node where the object was created.
Objects in the system may migrate from one node to another. The UID facility
defines the logical name space in the system. Operations on an object are
invoked by specifying the UID of the object and the operation name. Because
the type of an object can be determined from the unique identifier of that
object, operation invocation on an object is directed to the appropriate
object manager for that type. The operations on the remote and the local
objects are invoked in an identical fashion. It is for this reason that we
find the remote procedure call paradigm a convenient abstraction.

The UID generation is based on the stable storage and the stable
processor facilities. The UID generation facility is based on a local clock
process or a sequence counter that uses the stable storage to survive system
crashes and to ensure that the same UID is not regenerated on restart of a
node after a crash. The UID for an object indicates the type of the object
and the node where it was created. A scheme for generating UID in a reliable
fashion is described in (SCHA83].

The abstraction of recoverable objects provides mechanisms to restore the
state of an object after having made some changes to it, or to commit a change
to the object state. The concept of commitment forbids any restoration to
states before commitment. Commitment of a change to an object essentially
Implies permanence of the changes made to the object since the last commit
operation on it.

We use the concept of immutable versions to implement mutable recoverable
objects. An immutable object is one that is never changed once it is created,
i.e., every change to an object creates a new object. In our model every
change to an object creates a new version of that object; this version is
uniquely identifiable by using the UID of the object and the version number.
These principles are discussed in (REED78] and (SVOB81].

Reliability techniques Most suitable for constructing recoverable objects
include multiple versions, differential files, intention lists, audit
trails/logs, and self-identifying objects. Generally, a combination of
several of these techniques is used in constructing recoverable objects at a
node.

Maintaining multiple versions as a forward log is less expensive than as
copies of the original object. A forward log in which the sequence of changes

34



ABSTRACT DISTRIBUTED SYSTEM ARCHITECTURE

is idempotent can be used as an intention list to ensure the permanence of
results on the commitment of a transaction. Backward logs are used for
restoring objects by undoing the actions recorded in the log. Whenever a new
uncommitted state of an object is to be forced in-place on the stable storage
from the volatile memory, it is essential that (in order to keep the object
recoverable) the backward log be forced on the stable storage before forcing
the uncommitted object in-place on the stable storage.

Self-identifying objects and consistency checks play an important role
during restart after a crash in reconstructing objects, object headers and
directories during the restart after a crash. For example, with multiple
versions additional information such as the object UID, state of the versions
(committed, uncommitted, commit pending, etc.), pointers to other versions is
incorporated for crash recovery. After reconstructing the data structures on
crash recovery, the consistency checks are important in checking the validity
and correctness of the reconstructed data structures.

Atomic transactions are implemented using the facilities described above
and some concurrency control mechanisms. A transaction should be atomic in
the presence of concurrent operations and system crashes. Atomicity of
concurrent transactions requires suitable mechanisms for concurrency control.
There are basically three distinct approaches to concurrency control: locking
protocols CESWAT6], time-stamp based schemes [BERN81], and optimistic
techniques [KUNG81]. Recoverable objects support schemes to achieve atomicity
of transactions in the presence of system crashes. Transactions in our model
are treated as objects of process type. As in the case of any other object in
the system, a transaction is assigned a UID.

Nested transactions provide the facility to construct higher levels of
abstractions by composing a set of already defined transactions into one
larger transaction. The commitment of computations by each of the nested
transactions is dependent on the commitment of the parent transaction.
Concurrency control mechanisms are required to synchronize nested transactions
of the same or different parent transactions.

The remote procedure call mechanism is based on an atomic transaction
facility to ensure the atomicity of operations in the presence of system
crashes and other concurrent transactions. The remote procedure call
mechanism uses an unreliable datagram facility that supports high probability
of successful delivery of messages. In [SHRI82a] and [LISK82a] arguments are
given in favor of building a reliable remote procedure call facility using
less sophisticated facilities such as a datagram. These are examples of
end-to-end arguments [SALT81J that point out the wasteful duplication of
functions at different levels. Secure communication is achieved by encryption
of messages and storing unencrypted messages in protected buffers.

Table 4-1 summarizes and restates the design model in terms of design levels
for a system. For each level the faults that can be handled, how they can be
detected, and what error recovery techniques can be used are listed.
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Table 4-1. Summary of Application of Recovery Mechanisms

Design Level Fault Handled Error Detection Error Recovery
At This Level Techniques Techniques

o Site Crashes o Time-out o Object Replication
o Link Failures o Status Query - Majority Voting
o Lost Messages o Consistency - Quorum Based
o Loss of Objects Checks Voting Schemes

Distributed (Processes o Acceptance - Survivable Set
Applications and Data) Tests
and o Network o Diagnostic o Primary/Stand-by
Distributed Partitioning Tests - Periodic
Objects o Software Checkpointing

Malfunctioning - Reconfiguration
o Restart and Retry
o Recovery Blocks
- Primary/Alternate

Blocks
- Acceptance Tests

o Exception Handling
o Salvation Programs

o Site Crashes o Time-out o Commit Protocols
o Memory Failures o Status Query o Conditional

Atomic o Software o Interface Test commitment of
Transactions Malfunctioning o Acceptance nested transactions

o Duplicate Test
Messages

o Site Crashes o Interface Backward Error
o Memory Failures Tests Recovery
o Software o Acceptance o Multiple
Malfunctioning Tests Versions

Recoverable o Loss of Objects o Time-out o Differential
Objects (Processes and o Periodic Files

Data) Consistency o Intention
Checics Lists

o Audit Trails/
Logs

o Self-Identifying
Objects

o Salvation
Programs

o Incremental
Dumping

o Process
Checkpoint
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Table 4-1 (cont)

Design Level Fault Handled Error Detection Error Recovery
At This Level Techniques Techniques

o Link Failures o Time-out o Retransmissions
Communication o Message o Status Query o Alternate Links
Level (Messages) Corruption o Acks and Communication

o Lost Messages o Checksum/Parity Paths
o Duplicate Checks o Replicated Messages
Messages o Seq. Numbers

o Read/Write o Periodic o Careful Writes
Errors Consistency on Pages

Disk Pages o Loss of Disks Checks o Replication of
o Corruption of o Checksum/Parity Disk Pages

Pages Checks o Pages Replicated
on Multiple Disks

Techniques dealing with network partitioning, acceptance tests, interface
tests, consistency checks, and exception handling are highly dependent on the
applications.

4.3 A Model Of An Object Oriented Reliable Distributed System

This section takes the reliability design model presented in the previous
section and integrates it into an on object oriented design. The concept of
object managers is the basis for system structuring. An object manager
provides the encapsulation for a given type of objects; all objects of that
type are accessed or updated via that object manager. In this model the
construction of reliable distributed objects is based on an atomic transaction
facility and a remote procedure call mechanism. This approach is summarized
in Figure 4-2.

The lowest layer in this figure represents the kernel functions that
execute at every host node of the distributed system. Above the kernel layer
are the local object management functions such as storage management, access
control, synchronization, and object recovery. This layer represents the
functions that are associated with every object manager in the system; the
functions at this level deal only with the centralized object management. The
next layer provides facility of atomic transactions; thus, a sequence of
operations can be performed on a set of objects in an atomic fashion. The
remote procedure call mechanism facilitates operations on objects that are not
local. We have adopted the remote procedure call mechanism because it
provides a uniform way of accessing remote as well as local objects; thus,
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location of the object is transparent to the users during access or update
operations. It is important to make the semantics of remote and local
procedure calls identical in the presence of host crashes and communication
link failures. In our design we have adopted the "at most once" execution
semantics for remote procedure calls; thus, in the presence of duplicate
messages or on server node crash-restart, effectively only one execution of
the remote procedure will occur. The combination of the remote procedure call
mechanism with the atomic transaction facility is used for managing objects
that are either partitioned or replicated. Based on these mechanisms one can
suitably create type definitions for replicated or partitioned objects such
that one can access or update those objects in the same manner as updating
centralized objects.

DISTRIBUTED OBJECT MANAGMENT FUNCTIONS

(Partitioned and Replicated Objects)

RELIABLE REMOTE PROCEDURE CALL MECHANISM

ATOMIC TRANSACTION FACILITY

LOCAL OBJECT MANAGEMENT FUNCTIONS
(Concurrency Control, Recovery, Access Control,

Object Storage Management)

KERNEL FUNCTIONS
(Host Resource Management, Communication, Scheduling,

Remote Call Handling, Interrupt Handling)

HARDWARE

A Model for Reliable Distributed systems
Figure 4-2
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4.3.1 Structure of Object-Oriented Distributed Systems

An object-oriented system consists of a collection of Type Managers and
the objects created by them. Type Managers create vertical partitions in the
system. For a given type in the system, a Type Manager would exist at all
those nodes which may be required to store objects of that type. A Type
Manager at a node manages all objects of that type at that node. The multiple
instances of Type Managers for a type function cooperatively to provide the
abstraction of a single Type Manager for that type in the system. Each Type
Manager defines an address space in which all the objects of that type reside.
A Type Manager is logically viewed as a single process that performs all the
state transformations on the objects in its address space in response to
execution requests by some other objects of the same or different type.

At a physical node, several different Type Managers may reside, each
managing objects of its type at that node. The abstract machine to support
such an object-oriented system can be constructed from almost any
hardware/software system architecture. The system architecture, which
includes the hardware, software, and the firmware architecture, of the
processors to support such a system must have: (i) a mechanism for switching
the processor between Type Managers, (ii) a mechanism for partitioning
secondary memory resources among Type Managers, and (iII) a mechanism for
exchanging messages between Type Managers.

It can be seen from the preceding model of Type Managers that there is no
concept of a system-wide state or uniform control and/or recovery mechanisms.
Resource management functions and recovery mechanisms are partitioned along
with the set of Type Managers. The traditional functions of system-wide
software units such as operating systems and database systems are incorporated
into a collection of Type Managers which implement the basic elements of the
model of distributed computations. This is a radically new view of operating
systems.

Object Type Managers are the primary building blocks for the permanent
elements of the system. The Type-Type Manager is an object in the system that
manages "types" in the system. It is the means by which new types are
introduced into the system. The concept of the Type-Type Manager is
essentially the same as that of the TYPE-TYPE object in the Hydra design
[COHE75I

The objects in the system are accessed in a uniform fashion regardless of
their locations. All operations on permanent objects are performed within a
transaction. A transaction is basically an atomic action that is defined as a
sequence of operations on local or remote objects. A transaction ensures
atomicity of distributed operations. It is possible to introduce concurrency
within a transaction by creating one or more nested parallel transactions.

39



4.3.2 Functions of the Type Managers

The functional characteristics implemented by the Type Managers are the
original basis for defining abstract data types. Extending abstract data type
concepts to include a formal basis for the integration of recovery,
synchronization, and access control mechanisms generates a number of
additional functions for the Type Managers:

1. Each Type Manager is directly responsible for the mapping of the
occurrences of the objects they define to physical storage.

2. Each Type Manager implements access control policies for the
occurrences of its type.

3. Each Type Manager supports concurrent execution of its procedures
and/or functions.

4. Each Type Manager ensures the consistency of the objects it stores
under concurrent and distributed use.

5. Each Type Manager implements the necessary levels of redundancy to
ensure the level of fault tolerance given in its specification.

This obviously integrates many functions that have been conventionally
associated with database systems into the object management functions of this
operating system.

4.3.3 Structure of Type Managers

Externally viewed, a Type Manager is a collection of functions and
procedures which can be invoked on the objects of its type by specifying the
identifier of the object along with the operation name. This causes an
invocation request message to be sent to the Type Manager regardless of its
physical location in the system. Internally, these operations are executed by
the Type Manager using one or more server processes; such server processes may
be dynamically created or destroyed by the Type Manager. The operations on
remote and local objects are invoked by the clients in the same fashion as
procedure call. Such invocations on remote objects are performed by
implementing remote procedure calls (NELS811 [SHRI82] with "at most once
execution" semantics. A Type Manager consists of:

- Data structures for the objects of that type;
- Procedures/functions defining the type;
- Concurrency protocols;
- Recovery mechanisms;
- A database to manage the objects in its domain;
- A controller process that schedules/executes the requests.

A Type Manager is responsible for the permanent storage of the object
instances of its type. Each Type Manager interfaces directly with some set of
permanent storage devices. The Type Manager generates the mapping from the
UID for an object of its type to the physical storage on some permanent
storage devices. It also realizes object instantiation in the executable
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volatile storage from the permanent storage. There is no system-wide file
system. The object management system takes the place of a file system.

A Type Manager consists of a controller process whose purpose is to
schedule server processes to serve client requests. The server process is
given the same UID as that of the client process; thus, a client process is
conceptually viewed as migrating into the address space of the Type Manager.
This view of the migrating client process is useful from the viewpoint of
enforcing access rights associated with the client process. On the completion
of the requested service, the server process is deallocated. The controller
process accepts the incoming or outgoing invocation request messages, performs
security checks, and interfaces with the kernel procedures. Effectively, the
controller process plays the part of a local operating system for the Type
Manager; the scheduling policies can thus be tailored to the specific
requirements of the Type Managers. The controller process manages the server
processes performing the operations and provides them with a set of procedures
that perform resource management, communication, protection and other services
that are normally provided by an operating system.

A Type Manager's controller has several responsibilities related to
protecting its objects from unauthorized access. Upon receiving an invocation
request, the controller must obtain and store the requesting process'
identification. This information is made available to the operation via a
callable procedure so that the Type Manager's controller may check the access
list of the object. In addition, the controller appends the identification of
a process which is making an outgoing invocation request to some other Type
Manager.

When an incoming invocation request is received, the controller attempts
to locate the object whose UID is given in the request. First, the controller
looks for the object in its own local pool of objects. If found, the program
which will perform the operation on the object is parameterized with the
object's local address and then is scheduled as the server process. If the
object is not found locally, the controller determines if a "forwarding
address" has been left for that object. This might occur if the object has
been relocated to some other host. If the onject is not found locally, the
controller sends a reply message indicating that the object was not found and
includes the forwarding address if any.

In response to an update request, the Type Manager creates a new version
of the object. This version is committed only when the transaction that
created it commits; the uncommitted versions are discarded if the transaction
aborts.

Each Type Manager maintains a database which records the necessary
information pertaining to the objects in its address space. This database
records the identifiers of the objects of that type currently present at that
node, their physical addresses, and the commitment status of their most
current versions. A Type Manager is also responsible for aborting a new
uncommitted version by timing out if it detects no activity of the transaction
that created this version. Every time a new version of an object is created
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by a transaction by invoking an update operation, tne Type Manager ensures
that this new version is written onto the stable storage before sending an
acknowledgement for the operation. A scheme for maintaining such multiple
versions using differential files is described in Chapter 4.

Type Managers are responsible for ensuring that each of their defined
operations is atomic. The operation must either complete successfully or else
abort, leaving the object completely unmodified. This is not difficult to
achieve if only local objects are being modified in the operation. However,
if the operation involves invoking operations on other Type Managers, then the
controller uses the transaction facility to ensure the atomicity of the
update. If the Type Manager is structured so that operations may be executed
concurrently, the controller ensures that objects are not being modified by
two operations simultaneously or read by one operation while being modified by
another. Each type, in general, has its own set of constraints on the allowed
order of execution of its operations on a given object. These constraints are
supplied when the Type Manager is created.

4.3.4 Distributed Types

The reason for introducing the concept of distributed types in the system
is to make transparent the distributed nature of an object that is logically
viewed as a single object. The components of an object may be distributed by
replication or partitioning. The transparency of the replicated or
partitioned nature of an object is a convenient abstraction which makes
updating and accessing of distributed and centralized objects identical.

A distributed type is an abstract data type whose concrete representation
is distributed. For example, an abstract type called reliable-file might be
implemented using physically distributed replicated copies of a file, or a
global database might be implemented as a set of partitioned distributed
components. The consistency and coordination among the distributed components
of the concrete representation is specified in the type definition and
enforced by the distributed Type Manager. Unlike the centralized objects, an
occurrence of a distributed type does not have a unique host location, i.e.,
an object of a distributed type may "reside" at more than one host for
reliability and performance reasons. An occurrence of a distributed type is
given a UID, the Type Manager then maps the operations directed to this UID
into a set of operations, which are executed as a transaction, on the
components that comprise the distributed object's concrete representation.
This mapping can be done at any of the hosts where the distributed object is
conceptually "residing". The operations defined for a-distributed type are
implemented as transactions.

4.4 Summary

The system designers guidebook presents an object-oriented design model
that supports structuring of distributed systems for high reliability and
error recovery. In this model, we identify the error recovery problems at the
different levels of functional abstraction and show how various error recovery
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techniques are integrated into this design model. For example, techniques
based on multiple versions, logs, careful replacement, and differential files
are used for constructing recoverable objects, checkpointing. Commitment
techniques are used for constructing atomic transactions, and the techniques
based on replication and primary-backup modes of operation are used for
constructing reliable distributed objects. The use of this model in the
design of an actual distributed operating system is the topic of the next
chapter.
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CHAPTER 5

ZEUS: AN EXAMPLE SYSTEM DESIGN

The previous chapter presented several recovery mechanisms and a design
model for constructing reliable distributed systems. This design model
provides a framework for integrating the recovery mechanisms into a system
design in a structural fashion. Ideally, a distributed operating system
should make the low level recovery mechanisms, such as logs and commit
protocols, transparent to application programmers by providing some high-level
functions for constructing reliable software. This chapter describes a
distributed operating system called Zeus which has been designed with this in
mind. The design illustrates how various recovery mechanisms are integrated
according to the design model presented in the previous chapter.

This example design should be viewed as a framework for integrating
recovery mechanisms into distributed system designs rather than a point
solution. As mentioned earlier, the approach to the development of the system
designers guidebook is example-driven. This approach consists of designing an
example system which illustrates the structuring principles as well as the
formal design definition methods for reliable system designs. Additionally,
the same example design is used to illustrate the application of design
analysis and verification method to reliable distributed systems to analyze
their performance, reliability, and functional correctness.

This chapter presents the principles followed in designing Zeus, an
object-oriented distributed operating system for integrating recovery
mechanisms into the designs of distributed command and control systems. The
main contribution of this work is an operating system design that provides an
integrated set of functions to application programmers for reliable management
of objects in distributed systems. These functions transparently provide
complex recovery mechanisms, commit protocols, concurrency control mechanisms
[KOHL81] [BERN81], and remote object accessing to application programmers.
For now the primary goal of the Zeus design is to define reliable object
management functions for distributed command and control systems and to
evaluate the performance and the correctness of the recovery mechanisms for
these functions; therefore, no implementation of the design exists at this
stage. The user visible functions support definition of object types,
creation of objects, and updating of distributed objects using atomic
transactions.

A distributed operating system for high reliability applications must not
only include suitable recovery mechanisms that are transparent to the
application developers but it should also provide transparency of the
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distributed nature of the system. The second feature is important to make
development of distributed software no more difficult than the development of
conventional software systems. The Zeus design has made a significant
contribution in this direction. Some other systems, such as LOCUS EWALK83I,
have integrated these two concepts in their designs; however, in most of these
systems, object management is limited only to the file storage level. To
date, Argus [LISK82] is the only other system besides Zeus which provides a
set of general mechanisms for reliable management of distributed objects of
any type. Zeus not only provides such general mechanisms, but also addresses
several other issues not included in the Argus design such as object naming,
object relocation, authentication and object protection. We have made an
effort to address these issues in the Zeus design making it novel as compared
to any other distributed operating systems. Another novel feature is the
integration of the conventional database management functions into the
operating system object management functions. This is an important advance in
the operating system designs because most of the current popular operating
systems do not provide efficient mechanisms for database applications
[STON81]. Even with respect to its recovery model, the Zeus design differs
significantly from other known designs.

The concept of object-oriented design has been used in some recent
distributed system designs such as Cronus [SCHA83], SWALLOW [SVOB81], Argus
[LISK82], and in the approach presented in [SHRI81]. Argus provides
object-oriented linguistic mechanisms for constructing reliable distributed
systems, and SWALLOW provides reliable object management. These systems do
not support some of the other operating system functions such as access
control, naming, sharing, and resource management. Some of the functions
supported by Zeus, such as naming, authentication, and interprocess
communication, can be found in Grapevine [BIRR82]. Grapevine can not be
regarded as a general purpose distributed operating system because it is
intended only to support a distributed mail system.

The design of the Cronus operating system has significantly influenced
the design of Zeus, largely because both these systems are intended for highly
reliable applications such as command and control systems. Zeus provides
users with reliable object management, which is not present in the current
design of the Cronus system. Like Cronus, Zeus has the character of a general
purpose operating system mainly because the nature of the command and control
applications includes a wide range of processing characteristics. This is in
sharp contrast to the requirements for banking or airline reservation systems
where the application environment is well-defined. Zeus provides capabilities
for defining and creating objects and transactions required by the application
systems. It also provides mechanisms that support management of such objects
in a reliable fashion. Zeus can be used for constructing any high reliability
application system.

This chapter presents the basic object-oriented building block mechanisms
provided by the Zeus distributed operating system. The concept of object
managers is the basis for system structuring. An object manager provides the
encapsulation for a given type of object; all objects of that type are
accessed or updated via that object manager. The object-oriented recovery
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model underlying the Zeus design is described in Chapter 4. In this model the
construction of reliable distributed objects is based on an atomic transaction
facility and a remote procedure call mechanism.

The object management model used in the Zeus design is based on the
concepts developed In the Hydra [COHE75] design. There are some obvious
differences between the protection models used in the Hydra and Zeus designs.
The protec':ion mechanism in the Zeus design is based on access control lists
while the Hydra model is capability based. Although both these models are
equivalent in terms of their functionality, they differ with respect to their

operational environment. The prime reason for using the access control list
model in our design is to be able to change the access rights dynamically.
Although it is not very efficient to change access rights dynamically in a

capability based system, it is important in a command control system where
some of the nodes might be taken over by hostile forces.

5.1 Structure of the Zeus System

Zeus is essentially a collection of Type Managers (TMs); typically, many
different Type Managers coexist on a host node. The core of the operating
system consists of a set of Type Managers that support capabilities for

defining new types and object instances in the system, authentication of

users, naming environment for each user, and reliable process and transaction

management functions. These system-defined Type Managers reside at every node

in the system. The lowest level of operating system at each node is called
the kernel; the kernel virtualizes the resources at the host so that each Type
Manager can be viewed as having its own virtual processor. The kernel

supports interprocess communication, primary storage management, processor

scheduling, interfaces to secondary storage devices, and UID generation; it

also handles all interrupts due to storage devices and the communication

devices. Figure 5-1 shows the major components of the Zeus system.

5.1.1 Structure of the Zeus Kernel

The Zeus kernel provides low level services to the Type Managers of the

system. These services include three important functions 1) interprocess
communication, 2) storage management and 3) unique identifier (UID)
generation. The UID generation in turn depends on the failure detection and

recovery of hosts in the Zeus system. The kernel consists of a task
dispatcher and a number of interrupt handlers. The task dispatcher schedules
the different Type Managers at its host node and handles their requests for
resources. It also handles the restart of the system and initiation of the
Type Managers. The resources managed by the kernel include volatile and
non-volatile storage, the processor and the communication handler. The kernel
interface consists primarily of three parts: invocation requests to other
Type Managers, requests for unique numbers, and requests for resources.

Interprocess communication is achieved by the mechanism of remote
procedure call (RPC) which consists of four messages interchanged between

caller and callee. These are call, call acknowledge, response and response
acknowledge. For each call that is made from or to a Type Manager the status
of the call parameters and status must be stored. To do this each Type
Manager has a call handler to perform this function. The synchronous nature
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of the RPC is achieved by the Type 4anagers who will first issue a call and
then, on getting the response, will inform the caller of it.

The storage functions of the kernel are performed at the object level;
thus, calls to the kernel can retrieve, store and delete objects. Further
stable storage operations can be executed by the kernel, where stable storage
is implemented using the Laupson ELAMP81] scheme. Storage management in the
kernel is minimal. Storage is available in fixed sized blocks and the Type
Managers request one or more of these olocks at any time. A Type Manager is
solely responsible for the data it writes to the blocks of storage. The
kernel keeps track of the ownership of blocks of storage. The routing of
invocation requests to Type Managers is the major function of the kernel.
Each call is an operation invoked against an object that is held by some Type
Manager. Operation Switch, which is a component of the kernel, supports this
function.

UID generation is a function used by the RPC and by the Type Managers so
that calls and objects can be uniquely identified. This function must
continue despite failure and recovery of hosts. To achieve this the hosts
participate in a distributed computation to keep track of active hosts and to
let new or recovered hosts join in the UID generation function.

The function of the Operation Switch is to forward an invocation request
to the appropriate Type Manager at a local or a remote node. These calls may
be from a Type Manager or from the network driver. Each call contains the
following information:

1. The extended UID of the object against which the call is invoked.
2. The extended UID of the process invoking the operation.
3. The extended UID of the principal on whose behalf the operation is

being invoked.
4. The operation and a set of parameters.

, M M 0WI
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The Operation Switch uses the host hint field of the target object's
extended UID to determine whether the object is on the host or not. If it is,
it uses the type unique number of the object to direct the call to the proper
Type Manager. If the object is on another host, the Operation Switch
instructs the Network Handler to send the call to the other host.

5.1.2 System-Defined Type Managers

As mentioned previously, Zeus is a set of Type Managers whose members may
potentially change dynamically as Type Managers are created, deleted, and
modified. There is, however, a subset of Type Managers called the System Type
Manager which perform the essential services provided by the kernel of a
conventional operating system. In this section, the Type Managers for these
system types are defined. The following are the System Type Managers which
exist at each node in the system:

(1) Type-Type Manager
(2) Process/Transaction Manager
(3) Principal and Authentication Manager
(4) Symbolic Name Manager
(5) Program Type Manager
(6) Message Type Manager

The definitions of new Type Managers is introduced in the system by using
the mechanisms supported by a system-wide object called the Type-Type Manager;
thus, the Type-Type Manager implements functions to create, alter, delete and
replicate Type Managers. The definition of the Type-Type object given here is
in adaptation and extension of the Type-Type concepts originating in the HYDRA
[ ULF81J operating system. The facilities provided by the Type-Type Manager
include an explicit command for locating the copies of a Type Manager.

The Process/Transaction Manager provides the reliable management of
processes and their operations in the system. The atomic action facility,
called transaction, forms the basic mechanism for building reliable
applications including management of distributed objects.

The Symbolic Name Manager and the Message Type Manager can be regarded as
applications built using the Process Manager functions. The Symbolic Name
Manager maintains the name contexts for the clients in the system. Thus, a
client can use string names instead of UlDs for accessing objects; the
Symbolic Name Manager translates the string names to object UIDs depending on
the context of their use. The Message Type Manager supports message
cmmunication among the clients. The Program Type Manager supports building
executable program objects from a set of specified code segments. It has the
conventional functions of a linker and loader. The Principal and Access
Control Manager has the function of associating appropriate access rights with
the processes in the system which carry out operations on behalf of system
users.

5.1.3 Process Management

Processes are active objects that perform state changes on behalf of
system users by modifying shared permanent objects. They have a (system
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defined) type, PROCESS, and are managed by an Type Manager called the Process
Manager. Transactions are PROCESS objects with the additional property of
atomicity. Atomicity, or the "all or nothing" property, means that either all
or none of a transaction's updates become permanent. The TRANSACTION type is
derived from the PROCESS type; thus, all operations defined on processes are
applicable to transactions. Additional operations are defined for transaction
objects. Shared objects can be updated reliably only by transactions.

Reliable applications are built in Zeus by manipulating objects using
transactions. The Zeus kernel offers only unreliable remote procedure calls
[NELS81] [LAMP81b] which are made reliable by invoking them within a
transaction. The transaction facility also provides a powerful mechanism for
managing replicated or partitioned objects reliably. This section presents
the computational model for managing processes and transactions, and the
application visible operations. These operations are summarized in Table 5-1.

The Zeus design uses the transaction concept for reliability and to avoid
the domino effect during process rollback by enforcing disciplined
interactions among processes. First, all information-flow among processes
which affects global state takes place via shared objects. Second, all shared
global objects must be accessed within a transaction. A transaction defines a
"sphere of control" (SOC) [DAVI73]; all objects modified by a transaction are
said to belong to its sphere of control. Third, no other process/transaction
is allowed to access objects belonging to a transaction's sphere of control
during that transaction's execution. If the transaction completes
successfully, the updated objects are "committed"; otherwise, they are
restored to their state before the transaction began execution.

A process can create sequential and concurrent transactions. The parent
process of a sequential transaction is suspended until that transaction
terminates. However, the parent process of a concurrent transaction process
executes concurrently with its child. When a concurrent transaction process
terminates, an appropriate condition is signaled to the parent process.

The Zeus design allows a transaction to invoke other (sequential and
concurrent) transactions, called nested transactions [MOSS81] [RIES82]. A
top-level transaction is one whose parent Is a non-transaction type process.
Zeus supports nested transactions (i) to introduce concurrency into an atomic
action, and (ii) to allow a transaction to invoke procedures which may contain
transactions. Nested transactions also provide a means for constructing
recovery blocks [HORN74], and updating replicated objects using majority
consensus (THOM791 or weighted voting [GIFF79].
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Table 5-1: Application Visible Operations

OPERATION REMARKS

INVOKE input parameters: UID(1)
of object to which operation is
applied, operation name and operation parameters

CREATE PROCESS if successful, returns UID of the new process,
otherwise, returns error signal

DELETE PROCESS input parameter: UID of process to be deleted

BEGIN TRANSACTION if successful, returns UID of the new
sequential transaction; otherwise, returns error signal

CREATE TRANSACTION if successful, returns UID of the new
concurrent transaction; otherwise, returns error signal

END TRANSACTION initiates commit protocol between Process
Manager and Object Managers

WAIT input parameters: transaction UID(s) on which parent,
waits, optional timeout value

COMMIT invoked by processes only; input parameters:
transaction UID

ABORT cancels all of a transaction's updates

ESTABLISH RECOVERY returns recovery point number
POINT

DISCARDRECOVERY- input parameter: recovery point number
POINT

ROLLBACK input parameter: recovery point number; without
parameter, process rolls back to most recent recovery
point

To create a sequential transaction, a parent process or transaction
invokes the BEGIN TRANSACTION function. The parent process is then suspended
until its child terminates. The sequential transaction created by
BEGIN TRANSACTION inherits its parent's address space and runtime environment.
The transaction terminates by executing either END TRANSACTION or ABORT.
Invoking END TRANSACTION causes the Process Manager to execute commit
protocols with the Type Managers (also called object managers) of the objects

(1) A UID is a globally Unique Identifier; every process, transaction and
object in the system has a UID.
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accessed by the transaction. The code between a BEGIN TRANSACTION and a
corresponding END-TRANSACTION is executed as an atomic action, that is, as a
transaction.

A process or transaction creates a concurrent transaction by invoking
CREATE TRANSACTION. When a concurrent transaction completes, a condition is
signalled to its parent. At this point the child transaction is still not
committed; it is either in the aborted or the coamit-pending state. The
commit-pending state indicates that the transaction was successful and is
waiting for its parent to issue a commit command. If the parent is a
non-transaction process, then it explicitly issues the COMMIT command. Nested
transactions are implicitly committed when the top-level transaction commits.

A parent process or transaction can wait for a completion signal from a
concurrent child transaction by invoking the WAIT function. WAIT can include
a time-out option will cause the invoker to be suspended until either the
transaction completes or an interval of time passes. A process may wait on
any of several transactions, or until each of a set of transactions has
completed.

Processes and transactions perform operations on shared global objects
using the INVOKE function. Remote and local shared global objects are
accessed identically.

A top-level transaction may make a commit decision based on the status of
its nested transactions (e.g., completed or aborted). It Is undesirable to
require a top-level transaction to revalidate the state of the objects
accessed by a completed nested transaction if the top-level transaction
decides to commit. Revalidation of object states can be avoided if a nested
transaction follows an appropriate commit protocol. A nested transaction can
follow either a one-phase or two-phase commit protocol [BALT81] with its
parent. Using a one-phase commit protocol means that, when a nested
transaction completes, all tL.. objects it modified are in the commit-pending
state. The commit-pending versions cannot be aborted unilaterally by an Type
Manager. In contrast, following a two-phase commit protocol leaves modified
objects in the uncommitted state. Such uncommitted versions can be aborted
unilaterally by their Type Managers, thereby aborting that nested transaction.

Zeus uses the one-phase commit option for nested transactions. This
allows the use, within a transaction, of a conditional statement that depends
on the successful completion of one of the transaction's nested children.
Such conditionals may be used because the one-phase commit option prevents a
unilateral abort by an object manager from invalidating conditional decisions
made by the parent transaction. It also eliminates the need for a parent
transaction to revalidate the status of completed nested transactions.

Object managers and process managers follow a two-phase locking protocol
CESWA76] so that all concurrently executing transactions are serializable.
All concurrently executing nested transaction with the same parent are also
serializable according to these rules.
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A process or transaction may establish a recovery point by invoking
ESTABLISH RECOVERY POINT (ERP). When ERP is invoked, the Process Manager
saves the current state of the process on stable storage and returns a
recovery point number to the calling process. A process can explicitly roll
back to some previous recovery point by invoking the ROLLBACK function. If no
parameters are given, the calling process rolls back to its last recovery
point. If a recovery point number is supplied, the process rolls back to that
recovery point.

It is possible to establish a recovery point for a parent process when a
sequential transaction commits by using the ERP option with the
END TRANSACTION command. If the parent process subsequently crashes, it would
be started either from this recovery point or from a subsequent recovery
point, avoiding re-execution of a transaction that has already been committed.

The Process Manager establishes the initial state of every process as the
recovery point numbered 0. All subsequent calls to ERP return sequentially
increasing integer numbers. When a process completes, all of its recovery
points are discarded. A process can also discard any of its recovery points
by invoking DISCARD RECOVERY-POINT (DRP), with the number of the recovery
points to be discarded.

5.2 Formal Definitions of the Designs

A major part of detailed design of the Zeus operating system that
includes the design of the Process/Transaction Manager and the Generic Object
Manager has been done using Concurrent System Definition Language (CSDL).
These designs are presented in Volume II of the guidebook.

CSDL is intended for designing systems with inherent concurrency (for
example, geographically distributed systems), systems in which concurrency is
needed to deliver adequate performance, or for which expressing the design as
a collection of concurrent modules leads to a simpler, more understandable
design.

There are two basic concurrent architectures: the static architecture in
which the system is created with a fixed number of modules which persist
throughout its lifetime, and the dynamic architecture in which modules are
created as needed to handle new tasks. CSDL supports them both. Following
are the salient features of the CSDL methodology:

1. A formal model of sequential and concurrent computations.

2. A system model that characterizes the building blocks with which systems
may be designed.

3. Methodological principles and guidelines that define desirable properties
of the design activity, the design language and the design itself, and
make procedural suggestions for carrying out the design process.

4. Technical methods essential for engineering software. They are, for
example, data abstraction, procedural abstraction, Dijkstra's constructive
approach, and the like.
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5. A description language - a formal notation for describing how a system is
built up from pieces and how those pieces are connected. Its semantics
are based on the model of computation.

6. A specification language - a formal notation for documenting the expected
behavior of a system description. Its semantics are based on the formal
model.

7. Analytic methods for investigating operational properties such as
performance, reliability, or security of alternative functionally correct
system designs.

These elements are applied to detailed design, the development phase
whose work product is a design documenting a system's logical architecture,
its paths of information flow, the data type of each system object and the
behavior of the system and each of its modules. A detailed design expresses
what will actually be implemented. Each object in the design -- module, data
object, procedure, or information flow path -- will exist in the
implementation, though the object's physical realization may be different from
its logical design. For example, a type operation designed as a procedure may
be implemented with In-line code.

In CSDL, the basic locus of control is the machine. The machine is a
container of objects and a control procedure in execution. A machine may
contain data objects of any type. A machine may also contain machine-objects,
that Is, other machines in operation, and pools of machine-objects from which
operating machines may be created and destroyed. These structures (the
machine-object and the pool of machine-objects) enable a single machine to
contain several concurrently operating local loci of control.

A machine definition consists of a list of the machine's public objects
and specifications of the machine's externally visible behavior. Public
objects are those (active and passive) machine objects which define the
external view of the machine. A machine's realization is guaranteed to have
these objects. A machine communicates with its environment through its active
public objects. Its passive public objects are visible to the environment,
but cannot be manipulated by it. Public objects are used in specifications of
the machine's externally visible behavior. Machine specifications may specify
initial values, invariant properties and machine behavior.

A concurrent system is a collection of machines which operate
concurrently and autonomously. They communicate asynchronously by passing
information. Internally, a machine consists of data objects and procedures
and/or subordinate machines to manipulate these objects. A machine containing
only procedures constitutes a sequential locus of control. A machine
containing subordinate machines constitutes several autonomous control sites.
If the system's architecture is viewed as a tree, its leaves are all
sequential control sites.

Machines may also contain machine pools from which machine instances may
be created and destroyed as the system runs.
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Systems are evolutionary. The initial system configuration is described
by a distinguished machine, SYSTEM. SYSTEM may contain other machines and
machine pools. Each machine that SYSTEM contains may, in turn, contain other
machines and machine pools. The initial system is, then, the configuration
consisting of SYSTEM, all machines It contains, and all the machines they
contain. A system evolves by dynamic creation and destruction of machines
from pools. Since every pool element may contain machines and machine pools,
creating a new machine dynamically may, in effect, create a new subsystem.

A system's communication architecture is the set of connections among its
machines. Connections are formed among active objects, objects whose values
can change without being manipulated by the machine which contains them.
Since machines cannot manipulate each other's objects, a communication link is
set up by connecting an active object in one machine to a complementary
(roughly same type, opposite direction) active object in another. The sending
machine puts a value in its local active object, and that value is
instantaneously transmitted to the complementary active object from which the
other machine can get it by a local operation. Active objects may be
connected to realize point-to-point, multi-cast, fan-in and broadcast
communication architectures. Connected active objects by definition
correspond to shared objects in the computational model.

5.3 Summary

The object oriented design model presented in the previous chapter is
used for designing Zeus, a distributed operating system for reliable
applications. A Zeus system is essentially a collection of Type Managers;
each Type Manager is responsible for managing the objects of its associated
type. A set of system-defined Type Managers provides certain primitives for
building reliable application systems. An atomic action facility is the basic
mechanism in Zeus for building reliable applications. An atomic action in
Zeus, called transaction, can span over several distributed sites in the
system. The purpose of the Zeus design is to illustrate certain design
principles for building reliable distributed systems; it is not intended as a
point solution but rather a framework for system designs. In designing a
system, the designer has to go through several steps starting with its
conceptual design to the implementation. A formal notation which supports
expression of the system definition in a clear and systematic fashion is the
single most important tool for the designer. Concurrent System Definition
Language (CSDL) is intended to serve as a formal design notation. A major
part of the Zeus design was defined using CSDL.
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CHAPTER 6

ANALYSIS AND VALIDATION TECHNIQUES

6.1 Introduction

Reliability, timeliness and correctness of system functions are the most
critical attributes of a command and control system. A major part of the
system designers guidebook is devoted to the techniques and tools for
analyzing these properties of reliable distributed system designs. The recent
approaches to system designing advocate that the design analysis activities
should proceed concurrently with the design activity in a tightly coupled
fashion; each design step needs to be validated to ensure that the design
decisions would lead to the desired performance and reliability goals. This
chapter presents a brief overview of the major accomplishments towards this
goal. The presentation here is divided into three major sections. The first
section describes the techniques for modeling fault-tolerant sytems using PAWS
for the performance evaluation. The second section deals with the reliability
analysis techniques, and the third section is devoted to the techniques for
proving or validating the correctness of recovery mechanisms in distributed
systems.

6.2 Performance Evaluation Of Recovery Mechanisms

The first concern of a system designer is generally the correct
functionality of the system he is designing. It is, of course, imperative
that a system correctly performs the tasks for which it is intended. Until
very recently, designers did not concern themselves with the costs, in terms
of resources and time, of providing this functionality until after some or all
of the system was operational. Early performance predictions and the
resulting design iterations are especially important in the design of highly
reliable systems. This is because, unlike functional correctness, the
reliability of certain functions or modules might be negotiable. If the cost
of a reliable function is too high, the designer might be willing to accept a
lower degree of reliability for that function which is not so extravagant with
system resources. Such tradeoff decisions can only be made if the designer
has at his disposal early estimates of performance and reliability.

The performance analysis part of the design evaluation phase is concerned
with providing quantitative estimates for certain resource, utilization
performance measures. Exactly which measures are interesting to the system
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designer and at what level of detail these estimates are to be made are
questions for which it is important to have answers before proceeding with the
analysis effort.

6.2.1 Performance Measures

There are several generic performance measures which are typically used
to describe and quantify the performance of computer systems. These fall into
two distinct categories: user- oriented measures and system-oriented
measures.

The user-oriented measure most often used with respect to interactive
systems is response time (turnaround time for batch systems). Response time
is the elapsed time between the arrival of a request and the completion of
that request by the system. Of course the exact moments of "arrival" and
"completion" of a request must be carefully defined for any given application.

The two system-oriented measures most commonly encountered are throughput
and utilization. Throughput is defined as the average number of requests
processed by the system per unit of time. This is typically not a very useful
measure of system performance since, as long as the system is performing well
enough so that it can complete requests without creating an ever- increasing
backlog, the throughput of the system is equivalent to the average arrival
rate of the requests. Utilization is defined to be the fraction of time that
a particular resource is busy - that is, working on some request.

6.2.2 Models and Hierarchical Structuring

For operational systems, the most straightforward approach to performance
evaluation is to directly measure the performance using some combination of
hardware and software monitors. This, of course, is impossible during the
design phases of a system since there is nothing yet to measure. In such
cases when direct measurement is impractical or impossible, a model of the
system must be devised which captures the salient factors that determine
system performance. The model is then evaluated and the performance measures
thus obtained are used as estimates for the performance measures of the actual
system.

The complexity of such models and the degree to which they represent or
abstract from the actual system determine to a large extent the amount of
effort and expense required to evaluate them. Generally, the more detailed
the model, the more expensive it is to evaluate. Luckily, during the design
phases of a system, there is normally not a requirement for extremely accurate
estimates of system performance. We are typically more Interested in
rejecting those designs which have a very negative impact on performance and
in providing guidance as to which parts of the design should be considered for
optimization; Therefore, performance models constructed during the design
stage are normally simpler and more abstract relative to the actual system.

Even so, modeling a system which has many interconnected parts, even at a
very abstract level, often produces overall models which are large, complex,
and for which evaluation is intractable. The solution to this problem is the
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same as the classical solution to the general problem of software complexity:
hierarchical structuring. Models which are decomposed into several smaller
sections and structured vertically or hierarchically as in Figure 6-1 prove to
be both more manageable and easier to evaluate [KOBA78] [BROW75]. Such

hierarchical structuring allows the analyst to summarize the performance
results obtained from evaluating one level of the model (say the micro level
in Figure 6-1) in a form which is easily usable in the next higher level (the
intermediate level in Figure 6-1).

The decomposition of a model into a hierarchy of sub-models should take
into account the inherent structures of the machine configuration as well as
the system being modeled. A common rule of thumb criterion [KOBA78] is that
the time constant at a given level of the model should be significantly
smaller than the average inter-event times at the next higher level. In other
words, a large number of state change events should occur at the lower level
between events at the next higher level. In Figure 6-1, for example, the
micro level models might have typical inter-event tim on the order of
micro-seconds or nano-seconds, the intermediate level on the order of
milli-seconds, and the macro level on the order of seconds.

For object-oriented, high-integrity systems, there are a number of
convenient levels of detail for which performance measures my be obtained.
This natural hierarchy of modeling layers is illustrated in Figure 6-2.
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Type Manager Operations

Macro
Level Kernel Services

, , Resource I

Intermediate Mnd
LevelCommunication

iMicro
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6.2.3 Parts of a Performance Model: System, Environment, Workload

There are really three distinct factors which impact the development of
performance models for computer systems. The most obvious of these is, of
course, the structure of the system which is to be modeled. As previously
mentioned, the structure of the model might not operationally reflect the
structure of the actual system but might rather abstract from it the main
features which affect performance. It is believed, however, that the object-
oriented system structure discussed widely in this guidebook will simplify the
task of producing performance models of the system. This is because of some
of the same reasons that make this approach highly suitable for the
formulation of highly reliable distributed systems: inherent modularity and
hierarckical structuring.

In addition to modeling the structure of the system, the environment in
which the system must operate must also be considered. The environment
includes such things as the native hardware and software in which the system
is to be embedded and, of particular interest in the modeling of reliable
systems, the fault characteristics of that hardware/software configuration.

Finally, the workload which the system will be expected to accommodate
must also be modeled in some way. Choosing an appropriate workload and a
representation for it is less of a problem for existing operational systems
although it is still very much an art and still very difficult to do. For
systems which are not yet operational, the problem.becomes one of choosing or
inventing a hypothetical workload which will hopefully reflect the
characteristics of the future workload of the actual system.

In order to obtain useful predictions of performance measures from the
models, they must be evaluated in some way. Performance model evaluation is
the process by which values are derived for the chosen performance indices
given a "correct" and properly parameterized model and an appropriate
workload. Once a validated model has been constructed, it must be evaluated
to obtain values for the performance indices of interest. Models may be
evaluated analytically, by simulation techniques, or by some hybrid
combination of the two.

6.2.3.1 Analytic Methods

In [KOBA78], an analytic evaluation method is defined as, "a solution
technique that allows us to write a functional relation between system
parameters and a chosen performance criterion in terms of equations that are
analytically solvable." The term "analytically solvable" here is usually
taken to include numerical solution methods other than simulation as well as
closed-form solutions. Although such a definition of analytic solvability
includes deterministic techiques like automata theory and Petri nets, the term
is most often used to refer to the mathematical discipline called queueing
theory. Mathematical queueing theory provides a framework in which networks
of resources (CPU, memory, I/O devices, etc.) are being prevailed upon by
jobs to perform some services. Contention for a resource causes jobs to be
queued for later service.
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6.2.3.2 Simulation Methods

When evaluating an hierarchically structured model of a large system, it
is likely that at least some of the submodels will be susceptible to
analytical methods. It is also very likely, however, that the analytical
solution of some of the submodels will remain mathematically intractable even
with simplifying assumptions and constraints. In these cases, the only
alternative evaluation method for non-existing systems is simulation.

Simulation is a numerical technique for evaluating queueing network
models by mimicking the dynamic behavior of the system being modeled. The
principle advantage of this technique is its great generality. Most of the
constraints which are necessary for analytical methods have little consequence
with respect to simulation. The three main problems with simulation are the
expense involved with building the simulator, the expense of running the
simulation, and the necessity for statistical analysis of the resulting output
data.

The problem of the expense of running simulations derives from the fact
that the length of a simulation run is proportional to the number of events
which must be simulated rather than to the duration of simulated time. In the
example of Figure 6-1, it would probably be desirable to run a simulation of
such a system long enough to see perhaps hundreds of events at the macro-level
in order to ensure that the simulation reaches a steady state. Since events
at this level occur approximately every second, we will wish to run the
simulation for something on the order of say 1000 seconds. But if the
intermediate and micro levels are also entirely included in the model, the
total number of micro events which must be simulated might be on the order of
several billion. Such a simulation run will likely be very expensive. This
problem is most effectively controlled by hierarchical structuring. This
allows low-level models to be evaluated separately and the results summarized
at the next higher level in the form of a scaling factor or statistical
distribution.

6.2.3.3 Hybrid Methods

A combination of both analytical and simulation methods may be used in
evaluating a model of a large system. Again, the hierarchical nature of the
model may be taken advantage of to allow lower-level sub-models to be
evaluated using either analysis or simulation whichever is more appropriate
and least expensive. The results thus obtained may then be summarized in
modeling the higher layers.

6.2.4 Performance Measures for Recovery Mechanisms

The design tradeoff decisions concerning reliability and integrity
mechanisms and performance are generally more complex than those for
conventional systems where high reliability is of less importance. Such
tradeoffs are conventionally between different kinds of performance, such as
resource utilization and response time. The only other analytical property of
such systems is their correctness - the degree to which they satisfy their
operational specifications. For obvious reasons, the correctness of a program
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is rarely purposely compromised in favor of better performance. It may,
however, be perfectly valid to design an object so that it is slightly less
reliable but responds quicker (or vice versa).

Because of the complex tradeoff decisions which are likely to be involved
in configuring a system such as the one with which we are currently concerned,
it will be necessary for the designers (and possibly also the system
administrators) to have at their disposal reasonably accurate estimates of the
costs of the various reliability and integrity mechanisms which are provided
by the system. In order to provide such estimates, the analyst/designer must
examine at least three different cases:

o The performance of the system in the absence of the relevant
reliability/integrity mechanisms.

o The performance of the system with the relevant mechanisms in place but in
the absence of the failures which the mechanisms are there to protect
against. This class of performance figures, when compared to those
obtained as above, will provide a useful estimate of the best case cost of
providing protection from faults.

o The performance of the system with integrity mechanisms in place and when
failures of the defined class actually occur. Together with the results
obtained in the first two cases above, these figures will provide an
estimate of the time and resource requirements of the recovery mechanisms
of the system.

6.2.5 Example Metrics for Some Generic Integrity Mechanisms

The following is a sampling of some of the performance measures which are
likely to be interesting in a distributed, object-oriented reliable system.
Three generic classes of reliability and integrity mechanisms are used to
illustrate the issues involved; transactions, concurrency control, and object
replication. A more detailed discussion of these mechanisms may be found in
Chapter 4.

6.2.5.1 Transaction Mechanisms

Of course, user-level scenarios will probably be defined as or in terms
of atomic transactions. The response times and throughput of these will be of
primary concern. In this section, however, we will be dealing only with the
low level performance characteristics of the mechanisms used to attain
atomicity and reliability for groups of associatad individual type manager
operations. The following is a list of some of these low level
characteristics:

o Mean Rollback Time - The mean time required for a type manager to rollback
an object to a previous state (the state of the object at the time of the
last checkpoint).

o Mean Size of "Window of Vulnerability" - The mean time during which an
object Is vulnerable to a failure of the coordinator of the transaction.
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o Mean User In-Doubt Period - The mean time from when a user decides to
commit a transaction until the user can be told that the results are
committed.

o Mean Coordinator In-Doubt Period - The mean time (from when a coordinator
issues a comit message until it receives acknowledgments from object
managers, e.g., second phase) during which a coordinator must retain the
state of a transaction.

6.2.5.2 Object Replication

There are both costs and benefits associated with maintaining multiple
redundant copies of some objects. The costs are in the form of the additional
storage requirements for the redundant copies and the time and resources
required to ensure that the multiple copies remain consistent. The

performance benefit stems from the fact that, in some cases, local copies of
an object may be used to provide read-only access thus eliminating the
communication costs of accessing a remote copy instead.

o Redundant Storage Overhead - The additional storage and other resources
required to maintain all but one of the identical copies of an object.

o Multiple Update Overhead - The additional time and resources required to
update additional copies of a replicated object.

o Read-Only Access Improvement - The average Improvement in read-only type
operations due to the distribution and replication of an object.

6.2.6 Zeus Performance Modeling

The performance evaluation of Zeus is carried out using PAWS (Performance
Analyst's Workbench System) [IRA83I, a general purpose simulation language for
the performance evaluation of system models. Our choice of these particular
tools was partly due to in-house familiarity with them (PAWS is a registered
trademark of Information Research Associates), and partly due to their
suitability for the tasks of representing and evaluating performance models.

The creation of a performance model is a multi-step process involving

first a determination of the most relevant execution pathways in the system
design (i.e., there are many possible execution pathways in any system, and
only a subset of those is used with great frequency). This shifts the focus
upon those modules and the system activity those modules represent that is
most relevant to the performance of the system. Once the performance
determining pathways are defined, they must be coupled in a meaningful fashion
with a target resource (hardware) configuration and a specification of the
resource usages along the performance pathways.

Execution paths are translated into In-ruation Processing Graphs (IPGs),
which are pictorial constructs for modelin, information processing systems.
As given in an introduction to this tool CIRA83], IPGs are a useful modeling
methodology for several reasons: pictures often provide the best method for
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describing and understanding information flow; it is easier to communicate
ideas quickly using a picture; and information processing systems are often
designed around a structure of information flow. From these IPGs, it is a
straightforward translation to a queueing network model.

In a distributed operating system, information flows through resources on
hosts and between hosts in the network. The basic graphical components are
nodes, edges, and labels. In an IPG, each node represents a resource (such as
CPU, memory, disk units, etc.) while edges connect nodes and represent some
form of information flow from one resource to another along an edge. Edges
are given labels denoting the form of information flow. The IPGs are directly
mappable to the Performance Analyst's Workbench System (PAWS), which is a
simulation language that is used to evaluate performance models. In a model,
the information flows wt.ich are of interest are given what are termed category
and transaction names for which statistics are gathered during the simulation.
Additionally, for each resource in the model a set of summary statistics is
generated.

6.2.7 Summary

In the system designers guidebook we have discussed the tools and
techniques that are available to aid in the performance analysis of
distributed, reliable systems. We began by very briefly surveying the field
of performance analysis of computer systems, especially emphasizing the issues
that were relevant to performance analysis during the design phases. Modeling
and model evaluation techiques are the important topics in this regard. In
addition to the general sketch of performance modeling, we also give a
somewhat more detailed account of several of the representational and
simulation tools. The specific issues involved with modeling the design of a
particular class of computer systems are discussed in the guidebook. It
should be apparent from the material in this chapter that performance
evaluation during the early stages of design and continuing throughout the
lifetime of the system can be an invaluable strategy for producing viable,
efficient software products.

6.3 Reliability Analysis Techniques

Similar to performance characteristics, the specification and evaluation
of reliability characteristics of a design are an important and integral part
of the design process for reliable systems. A design process typically
consists of several phases starting with the requirements specifications up to
the final design meeting those requirements. These phases may involve several
iterations of designing and validation until the design meets the desired
requirements. For reliable systems, the requirements statements must include
the specifications of the desired reliability characteristics of the target
system. Typically a design process consists of decomposing the design into a
set of sub-problems. In such cases the requirements statements, which include
the reliability specifications, are appropriately extended and augmented for
each of the sub-systems. The validation task consists of verifying that the
target system constructed from those sub-systems, with the given reliability
characteristics, has the desired reliability.

62



ANALYSIS AND VALIDATION TECHNIQUES

The traditional approach to specifying reliability characteristics is to
use certain numerical measures such as availability, mission time, and
mean-time-to-failure (KTTF). Chapter 2 described some discrete measures for
reliability specifications. These measures imply that a system has certain
failure characteristics under a given set of system faulLs. The measures
capture the level of consistency maintained by the system under this set of
faults.

There are essentially two approaches to reliability analysis of system
designs -- simulation and analysis. One approach is to simulate the system
design along with its failure environment and the recovery mechanisms. This
approach is inherently expensive because it requires building simulation
models specific to the design to be analyzed. This approach provides
relatively more accurate results as compared to the second approach because it
captures the structure and functioning of the system to a greater detail. The
second approach is based on combinatorial analysis of the system based on the
reliability characteristics of its components and their interconnections. The
reliability characteristics of the components are specified in terms of
availability and MTTF. This approach is, in general, faster and less
expensive.

The combinatorial analysis methods provides quick first-order evaluations
of the system reliability characteristics given the system configuration and
the reliability characteristics of its components. These methods can be used
to construct a general purpose evaluation tool. One such tool called NetRAT
(Network Reliability Analysis Tool) is described in this chapter. The
evaluations using this method are somewhat less accurate as compared to using
simulation models bacause they do not capture some of the dynamic operating
conditions such as execution delays, system load, and resource contention.

6.3.1 Specifications of Reliability Measures

Traditionally the reliability characteristics of a system are expressed
in terms of certain probabilistic measures such as the availability,
reliability, mean-time-to-failure (MTTF), and mean-time-to-repair (MTTR) for
repairable systems, mission time, etc.

For a large system, such as a distributed command and control system,
rather than specifying the availability and MTTF of the entire system one
would be more realistic in individually specifying the reliability
characteristics of its services and virtualized resources as seen by the
system users. The approach that we follow consists of specifying the
reliability characteristics of the functions executed on the system objects.
These characteristics for a function will be different for its invocations
from different nodes. For example a system service might be available 100% of
the time when accessed from one node, whereas the same service might be
available for only 90% of the time when accessed from some other node.

The availability A(t) of a system is a function of time indicating the
probability that the system is functioning correctly at any given time t. In
distributed systems, we are interested in computing the availability of the
functions (services), which expresses the probability of that function
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(service) being available at any random instant of time. A function execution
at a node requires access to some resources which are distributed in the
network. A successful execution of the function requires that the resources
be accessible from the node where the function is being executed. Therefore,
the availability of a function is dependent on the availability of (1) the
communication paths to the required resources, (2) the nodes holding the
resources, and (3) the nodes executing the function.

The mean-time-to-failure (MTTF) for a service in a distributed system is
the expected time interval during which that service remains available before
a failure occurs. A service fails if it is unable to access any of the
required resources or if the node executing the service fails. KTTF is an
important measure of reliability in distributed systems because of the
possibility of large delays encountered in communication.

Using the numerical reliability measures for requirements specifications
raises certain problems. One of the problems is dealing with small numbers in
specifying these measures. Another problem is related to the fact that the
reliability measures of the system components are significantly altered in the
combat conditions. Under such circumstances the reliability analysis
techniques should focus on determining whether the system performs correctly
and in a timely fashion if a certain set of resources are unavailable. This
leads to specifying a discrete set of reliability levels corresponding to the
consistency levels maintained by the system under various fault conditions
within the system. The system designers guidebook presents four discrete
reliability classes for objects.

6.3.2 Network-Based Reliability Model

This section describes a network-based approach for representing a system
to evaluate its reliability. This model ideally suits for representing
distributed system architectures. In the past a considerable amount of work
has been done in the evaluation of reliability and availability of paths in
network-based systems, particularly in the area of communication networks.
Most of this work addresses the problem of pair-wise terminal reliability in
communication networks. i.e., given a pair of nodes in the system, determine
the availability of the communication path between these two nodes.

In distributed systems, an important generalization of the pair-wise
terminal reliability problem considers the availability of paths from a set of
nodes in the network to a different set of nodes. For example, a service
execution in a network might require access to several resources that are
located at different nodes. It is also possible for a service to require
access to any one of the several resources distributed in the network. For
example, a read operation on a replicated file can be successfully performed
if the node executing this operation can reach any one copy of the file. This
is referred to as the multi-terminal reliability problem and has been
addressed in a recent work (GRNA81). In (GRNA81] an algorithm is presented
which computes the multi-terminal availability from the availability of the
network components.
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NetRAT is a reliability analysis tool for network-based systems, which
facilitates the evaluation of multi-terminal reliability characteristics. The
NetRAT system is essentially based on the algorithms described in [GRNA81]
[GRNA80]. However, the algorithm presented in CGRNA80] is incorrect. We have
corrected this algorithm in (WANG83] and incorporated it into NetRAT. In
addition to the availability calculation, NetRAT also permits the evaluation
of other reliability measures, such as the reliability function,
mean-time-to-failure (NTTF), and mission time. These extensions are described
in the next section.

The reliability analysis model underlying the NetRAT system is
network-based, and the evaluation procedures are combinatorial. In the
network-based model, a system is represented as an interconnection of nodes.
The nodes represent the functional units; and the links, which can be either
directional or bidirectional, represent the communication paths. Reliability
measures such as availability, reliability, MTTF, etc., are associated with
these components. In the NetRAT model, a set of functions and resources are
assigned to these nodes. Each function requires access to some resources,
which can be physical resources or other functions. Functions in the NetRAT
model correspond to activities which provide services in real systems; and
physical resources in the NetRAT model correspond to data and hardware
resources in real systems, such as processors, memory, disks, I/O devices,
files, etc.

A node may contain more than one resource or service, and multiple copies
of a resource may exist at several different nodes. In case of multiple
copies of a resource, any one of these copies can be used to meet the resource
requirements of a function. A function may be available at several different
nodes. The resource requirements of a function can be combinatorial; for
example, a function may require resources (A and B and C) or (B and D).

We illustrate this network-based model using a set of examples. Consider
the network shown in Figure 6-3. This network model consists of four nodes
1,2,3, and 4. The availability data of these nodes and the interconnecting
links are shown in the figure. A function (program) called FUN executes at
node 1. This function requires access to resource RI and R3. Resource RI is
located at two nodes, 2 and 4, and resource R3 is located at nodes 3 and 4.
In this example, we are interested in computing the availability of function
FUN. In the model shown in Figure 6-3, if a node is available (functioning
correctly), then all the resources located at that node are available.
Consider another scenario in which a node may be available, but the resources
located at it may ,ot all be available. At a given node, the availability of
a local resource could be less than 1.0. For example, in the system of Figure
6-3, resource R2 at node 3 is available with probability 0.7 and R3 with
probability 0.8. In order to represent this system in the NetRAT model, the
network model in Figure 6-3 is changed to that in Figure 6-4. Here resources
R2 and R3 are represented as separate nodes (shown as nodes 5 and 6) connected
to node 3.
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As mentioned earlier, it is possible to include in the resource
requirements of the function FUN some other function names. The actual
physical resources required for FUN include the union of the resources
required by each of the fuctions whose names appear in the resource
requirement of FUN. For example, in a modified scenario the function FUN
requires resources RI, R2 and FIND, where FIND is a function that requires the
resource R3. Hence the total resource requirement for FUN consists of RI, R2
and R3. Recursive references to function names in the resource requirements
are permitted, as long as they can be resolved in terms of physical resource
requirements.

6.3.3 CONCLUSIONS

In the system designers guidebook, we have presented a modeling and
analysis method to evaluate the reliability characteristics of systems. The
analysis is combinatorial and it is not easy to use manually. It is advised
that such procedures be automated as a general purpose tool. A system called
NetRAT, which is based on such a procedure, has been described in the
guidebook. The modeling approach used in NetRAT is network based, i.e., the
system is viewed as a collection of nodes connected by either bidirectional or
unidirectional links. Reliability characteristics of the individual links and
nodes are used to determine the reliability characteristics of the composite
system and is particularly attractive from the viewpoint of hierarchical
analysis of systems.

6.4 Validation And Verification Techniques

In this section we describe three methods for proving or analyzing the
fault-tolerant properties of distributed system designs. The detailed
descriptions of these methods can be found in the first volume of the system
designers guidebook. The first method is based on applying program
verification techniques to the design expressed in a suitable programming
language. This method is, in general, expensive in terms of time and it
necessarily requires support of automated tools during the verification
process. This involves proving certain formally stated properties of the
software system. During the last decade a considerable amount of work has
been done in the area of developing languages and their support tools that
facilitate formal verification of the software. The most notable of these
systems are Affirm (GERH8], HDM (ROBI75], FDM (KEmm8o], and Gypsy [GOOD78].
The Gypsy language and its verification system have been designed to
facilitate verification of communicating processes. This makes Gypsy an
attractive candidate in this category of methods. In this section we present
a brief description of the application of the Gypsy methodology to proving the
fault-tolerant characteristics of a system that is structured according to the
design model presented in Chapter 4. Application of this technique is
suitable when the design has been refined and specified to a detailed level.
The examples presented in Chapter 10 of the guidebook deal with the recovery
mechanisms at a single site.

The second method for proving fault-tolerance of distributed system
designs is relatively less rigorous and is amenable to manual proofs for small
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systems. Nevertheless, this method can be developed into a computer-assisted
system. In this approach we focus on proving properties of a set of
communicating processes. The system is abstracted as a collection of finite
state machines which interact by exchanging messages. The proofs are based on
the properties of the state sequences of these machines and the relationship
among the state sequences based on the communication events. Each finite
state machine is specified in terms of events and state transitions. Detailed
descriptions of the system in a programming language are not required at this
level; therefore, this method looks attractive at the higher-level design
phases such as the conceptual design or the functional architecture design.
An example dealing with the proof of a two-phase commit protocol is presented
in the guidebook.

The last method of design validation for fault-tolerance is based on
functional simulation of the design. In this method, to validate certain
recovery characteristics of a system, simulation models of the appropriate
parts of the design are constructed in a suitable simulation language rich as
Path Pascal, Simula or PAWS. The simulation models mimic the functional
behavior of the actual system as intended by the design. Some of the basic
issues involved in simulating the fault-tolerance characteristics of a design,
the requirements on the simulation language for this purpose, and the salient
features of a Path Pascal simulator for the Process/Transaction Manager in the
Zeus system. This approach is expensive in terms of time and effort because
it requires building exact simulation models of the system components.

6.4.1 Proofs of Recovery Mechanisms using Gypsy

6.4.1.1 Introduction

Gypsy is a mature methodology for constructing formal proofs that a
software system satisfies formal specifications (GOOD78, GOOD82a, GOOD82b].
Gypsy has been applied very successfully in several security applications, but
no attempt has been made to apply Gypsy to recovery problems. The focus in
this effort has been to answer the question, "What can be specified and proved
about recovery mechanisms with the existing Gypsy methodology?"

The designers guidebook describes two examples based upon work described in
Chapter 4. The first set of three examples illustrate different Gypsy
implementations of recoverable objects. A generic shell formally specifying
the behavior of recoverable objects is given, and then three different
implementations are shown to satisfy the formal specifications of the shell.
The second example is a Gypsy model of a transaction recovery scenario given
in Chapter 4. The recovery scenario is modeled in Gypsy, and formally
specified. This example supports the position that the precision required to
write formal specifications has the potential to contribute significantly to
the quality of the resulting design.

The intent of the recovery mechanisms considered in the effort related to
formal verification of recovery mechanisms is to provide necessary support the
implementation of atomic transactions. An atomic transaction is an operation
with the property that if it fails, the data objects that It was altering are
restored to the values that they had when the transaction first accessed them.
In a distributed system there are the added complications of multiple copies
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of data objects which must be maintained in synch, transactions which may be
spread over multiple machines, and host crashes and message transmission
errors.

The process of developing formally specified code is not radically
different from the standard cycle of software development. The critical
difference lies in the use of formal specifications. Because they are so
precise, formal specifications are often more difficult to write than an
English statement of a functional specification. However due to this enforced
precision the resulting specifications are considerably more useful.
Additionally, the requirement that the code be proven to coincide with the
specifications provides a tremendous increase in confidence in the resulting
software.

One point must be emphasized. Formal specification and proof does not
guarantee that there will be no errors in the code. It is possible that the
specifications do not capture the designer's intentions. It is also possible
to specify only part of the functionality of a program, in which case the
unspecified portions of the program may go wrong. What the verification
process does assure us is that the specification and the code are consistent
with each other.

6.4.1.2 Gypsy Support for the Specification of Recovery Mechansims

Gypsy provides a number of mechanisms that support the verification of
recovery mechanisms. There are two basic sorts of approaches that can be
taken, which are reflected in the two examples in this section. One is an
object oriented approach, which makes use of Gyspy's standard specification
methods, in this case lemmas to algebraically specify object properties and
routine specifications to specify the effects of operations on objects.
Gypsy's abstract data type facility could also be used effectively for these
examples . this approach one can describe the required properties of the
selected objects and then demonstrate that the proper selection of procedures
to manipulate these objects maintains this set of specified properties.

The other approach is to develop a procedural model that takes advantage of
Gypsy's concurrency mechanisms to simulate the distributed world, with buffer
operations to carry message traffic. Buffer histories are used to specify
such systems.

These two methods are complementary. On the one hand the object oriented
specifications provide a mechanism to specify the properties that recoverable
objects must have. A procedural model then permits the verification that the
procedures designed to maintain these objects in a proper state function as
intended.

6.4.1.3 Specifications and Proofs of Recoverable Objects

The example presented in the guidebook is chosen from the design model
for reliable distributed systems presented in Chapter 4. We have chosen the
recoverable object level of the model, which is built upon stable objects, and
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supports atomic transactions. In this example the stable objects are of
arbitrary type (left "pending" in the Gypsy notation).

We do not concern ourselves with the issues of security and access control
identified in the model. The problems of transaction and process management
would be dealt with outside of the portions of the system modelled here. We
also do not consider the problems of implementing stable objects, but
construct recoverable objects out of a data type, which is an abstraction that
is left pending.

First, formal specifications of recoverable objects are given. Then three
different implementations of recoverable objects are presented, and proven to
meet the required specifications. Finally, we give two examples of how this
model might be extended to cover two more abstraction layers of Figure 4-2.
The effects of incorporating the stable object layer beneath the recoverable
object layer on the proofs are discussed in detail in the guidebook. The
description of recoverable object can be used as the basis for the next higher
level handling of atomic transactions. The example builds a small type
manager that employs a simple locking protocol based on the recoverable object
specification.

6.4.1.4 Recovery Scenario for Atomic Actions

The study of applying Gypsy methodology to proving atomicity of
transactions in the example system demonstrates the utility of modeling system
designs in Gypsy. Even in the absence of proof, the need to write
specifications precise enough to support critical inspection forces a detailed
examination of assumptions. While this is a subjective process, as opposed to
the objective nature of the proof process, it increases the likelihood that
the coverage of the specifications is sufficient to describe the behavior of
the system under all cases included in the top level specification. In other
words, the specifications on the various components of the system are likely
to support our expectations (as embodied in a top level specification) about
the system as a whole.

6.4.1.5 Summary

Based on this experience, we offer the following observations.

1. Various aspects of distributed command and control systems can reasonably
be described (formally specified and implemented) in Gypsy, and the
implementation verified against the formal specification. The Gypsy
implementations may well serve only as models for actual implementations
in other languages, but such efforts should significantly increase
confidence In the correctness of the resulting code.

2. Some elements of these systems do not map directly into Gypsy. For
example, the notion of spawning a process is not supported by the Gypsy
model of process invocation. Thus, some pieces of the system design can
only be modelled in Gypsy in a fashion quite different from the intended
implementation. We believe, based on our own experience, that composing
these models, and formally specifying and verifying them can have
considerable benefit in enhancing the designer's understanding of the
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system, and the level of precision in the system description. Even in the
absence of formal proof, the additional precision supplied by formal
specification can be of utility.

6.4.2 Recovery Mechanism Proofs using Interval logic

Verification techniques based on analysis of input and output message
streams [MISRA81] and message buffers (GOOD791 suffice for establishing
"black-box" stimulus-response behavior of a process or network of
communicating processes. However, an important class of properties --
relationships among system state variables -- cannot be as easily expressed
and verified with these methods. We would like to be able to combine
assertions over the states of several processes, so-called "local" assertions,
into a system-wide "global" assertion stating a relationship among the
variables of the several processes. The difficulty is that such an assertion
is intended to hold at some particular "time", i. e., point in the history of
the system, and this requires a rough synchronization or "lining-up" in time
of the various processes. If the assertions are construed as holding at some
instant of time then it is required that the processes be precisely
synchronized so that at that instant all the related variables are stable and
in the desired relationship. This precise synchronization is difficult to
verify and can be expensive for the system to arrange.

The primary contribution of this work is the development of a framework
that facilitates construction of global assertions from local assertions. The
following section presents in an informal fashion the approach for
constructing global assertions about the communicating processes in a
distributed systems from the local assertions of individual processes. This
approach examines behavior of such processes over certain intervals,
establishes relationship among the intervals, and then derives global
assertions using these relationships. Because the process behavior is
described over intervals, we find use of temporal logic notation [MOSZ83,
HALP83] convenient in such proofs.

6.4.2.1 Proofs of Global Assertions

The approach presented here is intuitively quite simple. In this method
each communicating process is viewed as a finite state machine. The state
transitions in such a finite state machine occur either due to some internal
or external events. The external events correspond to the arrival of a
message from some other process. A process in a given state maintains certain
assertions over its variables. We refer to such assertions as the local
assertions. The occurrence of some event may cause a process to enter a new
state; during this state transition, the process may execute certain actions
which lead to new events in the system. Some of these actions - those which
send messages to other processes - may cause occurrence of events in some
remote processes.

A sequence of state transitions in a process can be represented as a
sequence of states. Such a state sequence also represents the behavior of the
process over some interval in that process's life-time. If a local assertion
holds true in each state of a state sequence, then we say that that assertion
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holds over the state sequence. This leads to another way of characterizing
intervals in a process's life-time as the state sequences over which certain
assertions are maintained. Therefore in the rest of this report we use the
term interval to characterize those state sequences which maintain some
assertion. In case of finite state machines, state sequences of interest can
be identified by constructing the regular expressions for the machine. The
interested readers should look into some text-books on automata theory for
this purpose. These regular expressions also define the reachability sets for
the states.

An important step in deriving global assertions on the basis of the local
assertions of individual processes over their state sequences is to establish
relationships among those state sequences (or, intervals). These
relationships define if an interval precedes or is contained in some other
interval. Such relationships are established on the basis of the
communication events among the processes. Using a partial ordering model for
events in distributed system, such as the one presented in [GREI78], one can
establish precedence and containment relationship among the local intervals
(state sequences) of the various processes in a distributed system. An
interval II is contained in another interval 12 if, and only if, the first
event of II precedes the first event of 12, and the last event of 12 precedes
the last event of I1.

A global assertion in a distributed system relates local variables of
several processes over scme intervals in the life-time of that system. The
important step is the conjunction of several local assertions over the same
interval. Suppose that an assertion p holds true for the local variables of
some process P during some local interval I1, and an assertion q holds true
for the local variables of some process Q during some local interval 12. Now
suppose that 12 is contained in I. This means that during the interval 12
(which can be viwed as a global interval for P) the assertion p is true for
process P. Therefore, the assertion (p and q) is true for the set of
processes P and Q during the interval 12. The validity of this statement is
quite obvious.

The method for proving global assertions in this approach is
schematically shown in Figure 6-1. The partial order relation between events
defines intervals and the containment relationship between intervals. A local
assertion for a process during an interval is derived from the set of
reachable states during this interval. The reachability set during an
interval is computed from the initial state during the interval and the state
transition specifications along with the events that can possibly occur during
this interval.

72



ANALYSIS AND VALIDATION TECHNIQUES

Partial order relation
among events

Events Intervals Interval

containment

State Transitions - Local assertions over G Global assertions
(Regula: Expressions) intervals based on

reachability of states

A Schematic Representation of the Proof Method Using Intervals

Figure 6-5

The first step in the method is to specify each process as a finite state
machine. This requires definition of the states and the state transitions
under various events. The set of events also include some communication
events, such as sending or receiving a message. For each process, based on
its finite state machine description, the regular expressions are constructed.
There regular expressions are used for reachability analysis during the
proofs. The next step involves identification of the intervals of interest
for which certain properties are to be proved; this requires a clear
understanding of the problem. These intervals are in general subsequences of
the regular expressions for the finite state machine. Relating the intervals
of different processes for global reasoning is done on basis of the
communication events.

6.4.3 Functional Simulation of Fault Tolerance

Functional simulation is an approach for validating that a model of a
software system exhibits a desired property. In this section we discuss the
use of functional simulation techniques for validating that a software system
is fault tolerant. The discussion is based on our experience building a Path
Pascal model that simulates a subset of the Zeus process/transaction manager
and a subset of a generic object manager. The fault tolerance property that
is validated is that transactions do provide an "all or nothing" effect even
if site crashes occur and messages are lost or duplicated.
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Functional simulation is one of the few techniques that permits the early
examination of the behavior of a program. The costs associated with this
technique are directly related to where in the lifecycle the activity is
performed. The closer" to implementation, the more detailed a model will be,
more costly to develop, and difficult to validate and analyze, but the greater
the potential insights and benefits. Functional simulation is a form of
testing and does have the same disadvantages of testing. It can show the
presence of anomalous behavior but cannot prove the absence of anomalous
behavior. A survey of different approaches to software verification and
validation and their strengths and weaknesses is given in [ADRI82].

Functional simulation uses an executable model to represent the behavior
of an object for the purpose of analyzing whether the object correctly
exhibits a desired property. Validation consists of observating the behavior
that a model of an object exhibits when executed on models of a computational
environment and external environment and analyzing that behavior with respect

to the desired behavior of the software system. For example, if the property
is security, the object modeled may be an operating system kernel. The
validation may consist of observing which requests are granted and denied
access; this can then be compared with what a model of the security property
defines as correct behavior.

6.4.3.1 Issues in Simulating Fault Tolerance

Simulating fault tolerance and distributed systems raises a number of
issues which impose requirements on the simulation system selected. This
section discusses some of the technical difficulties that we have encountered
and their implication for different simulation systems. A discussion of
solutions to the problems presented in this section and of the actual model
are given in the system designers guidebook.

The technical difficulties that arise are directly related to the
property that is to be validated and the technique that is to be used for
validation. Clearly validating the security of a design will involve
different modeling issues and validation techniques. The following discussion
is restricted to fault tolerance and specifically to validating the atomicity
of transactions, although some of the discussion is relevant to the modeling
and validation of properties in general.

The key events to be modeled are failures, so it makes sense to examine
what their impact is on a model. There are a number of failures that are of
interest. Among the kinds of failures are site crashes, memory failures (both
primary and secondary), link failures, and lost and duplicate messages. The
requirements that failures impose on a model may be analyzed by examining
their effect on a computation.

A site crash results in all active computations halting at the same time
in an unknown state. A model must be able to represent multiple concurrent
activities and control their progress. The multiple concurrent activities
model a system executing a certain number of user processes (e.g., equal to
the desired multiprogramming level) and system processes. Controlling the
computation's progress includes stopping a process when an event occurs and
continuing the process when some other event occurs. There are two types of
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events of interest -- resource coordination and processor failures. Resource
coordination say occur if multiple processes are sharing a resource (such as a
processor or a file) or are cooperating to complete a computation (such as a
buffer for a producer and consumer). Event coordination may be achieved by a
synchronization object and mechanisms (e.g., a semaphore and the ability to
allocate it and block processes). Processor failures require the ability to
stop all processes simultaneously and to cause them to make a transition to a
well defined next state.

It is not acceptable to put the burden of event management in the
application and system processes. A process should not check the state of a
resource each time that it accesses it, and it should not check to see if the
processor is active before it executes an instruction. Ideally, an
application process should request a resource and any synchronization should
happen as a side effect. Similarly, if a site crash occurs all processes
should be halted as a side effect of the failure and not due to the processes
checki g the processor state.

Simply halting the progress of a computation is insufficient for
simulating a site failure. The state of a computation is divided between
secondary and primary storage. Almost all primary storage is volatile. Hence
when a site crash occurs, a certain amount of the state of a computation is
lost. This requires that a model of volatile primary storage exhibit the loss
of information. However, if a model simulates memory failures it still needs
to be able to simulate recovery which requires starting a process at a defined
point with its computation in a state that is consistent with that point. It
seems as though a model must take snapshots (e.g., checkpoints) of a
computation's evolving state and correlate those wl'± different points in the
computation's progress. Two problems arise: there may be an arbitrary number
of such points and how a modeler knows which ones to select.

Memory failures may occur independently of site crashes. This results in
the same problems as above but with the added difficulty of only part of the
state of a computation being lost (e.g., the state may be resident in multiple
primary memories).

There are three kinds of communication failures of interest -- lost
messages, duplicate messages, and link failures. All of the failures change
the effects of operations on objects of type message. The first two occur
intermittently and affect a single message. The last one occurs for a time
interval that encompasses many messages.

A model of a failure should include the ability to do fault dt ection and
should not consume measureable resources or affect events that are independent
of it. Link failures and memory failures are eximples of resources becoming
uiavailable for a period of time. During that period the failures should be
detectable, for example by timeouts or parity checks. A model of a site
failure should not consume resources, so any computation done to simulate the
failure cannot consume memory or CPU resources. Similarly the discarding of
messages to simulate the loss of a message should not impact the CPU
utilization measured.
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Faults may be injected into a simulation either deterministically or
probabilistically. The deterministic approach requires an explicit statement
as to when a fault is introduced. It may be signaled either by an explicit
call or parameter within a call. It may be triggered based on the state of
the system. For example, if 10 transactions have been successfully completed,
lose the prepare message issued by the transaction commit coordinator; or if
there is an object in the commit pending state, then crash the site.

The probabilistic approach injects faults based on a distribution that Is
independent of the current state of individual computations. The signaling of
probabilistic fault injection is done implicitly by a routine generating a
value based on a distribution and determining whether or not the value
generated implies that a fault should be injected. For example, a network
driver routine may generate a value based on a uniform distribution. If the
value falls within a specified range, a message is lost.

The selection of which approach to fault injection to use is made based
on what is to be learned from a model and how much effort is to be spent
building and analyzing a model. The two approaches must be matched to the use
of the model and the kinds of faults that must be injected. For example, if a
model is to be used to demonstrate that a communication subsystem provides
reliable message delivery, faults in the form of lost and duplicate messages
may be introduced probabilistically. Other times it may be more important to
see the impact of a specific set of events on an operation, for example, the
effect of losing a specific message, such as a commit message, on the timeout
period and window of vulnerability for a commit protocol. This example
requires deterministic fault injection to ensure a specific ordering of
events. In general, probabilistic fault injection is easier to develop and
use within a model. However, probabilistic injection requires more runs to
ensure coverage of all possible event sequences. Hence it may be more
expensive in terms of time to run the simulation and time to analyze the
results. Deterministic fault injection is in general more expensive to
develop because faults may have to be generated based on the local state of
individual computations. It will result in the generation of all requested
sequences of events in a minimal amount of simulation time. However, the
deterministic approach will only generate those sequences of events desired.
There may be an equally important sequence of events that is not generated
because the analyst has not specified its inclusion.

6.4.3.2 Summary

The system designers guidebook demonstrates how failures in a distributed
environment may be modeled using Path Pascal, a process oriented simulation
language. It is useful to summarize Path Pascal's strengths and weaknesses in
terms of our previous discussion on the requirements for a simulation
language. Path Pascal does support multiple concurrent activities through its
"process" construct. This allows the modeling of multiple sites, each of
which has multiple applications executing concurrently. Pith expressions
provide a means for controlling shared data. If the state of a process'
progress is a shared resource (e.g., encapsulated within an object), It may be
accessed by multiple processes. Further if processes are divided into system
processes and application processes, each of which executes a disjoint set of
operations on the state information, the proper interleaving of the operations
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will allow the progress of a process and its state changes to be controlled.
Because the language has the full descriptive capacity of a programming
language and because it is process-oriented, the intricacies and side effects
of a failure may be captured.

There are a number of deficiencies in the language for our purpose.
Processes may be easily created dynamically, but there is no language
construct for destroying them. Process destruction may be achieved by
manipulating the heap from which they are allocated, but this is tricky and is
discouraged. A desirable mechanism is one that simultaneously interrupts all
processes of a given class (e.g., those executing on a specified processor) in
order to simulate site failures. Unfortunately, there is no relation (e.g.,
hierarchy or classes) between processes, and there is no way of
instantaneously interrupting a process.

Path expressions are intended for controlling the access to shared data
by multiple processes. As such, path expressions are schedulers. However, it
is difficult to use path expressions for scheduling processes for certain
types of condition synchronization (ANDR83]. The way that the state of sites
is disseminated when a failure occurs demonstrates one kind of condition
synchronization between processes. However, often one may wish to express the
states a process can go through as a form of condition synchronization with
itself. For example, an application process invoking a transaction has the
following specification: execute begin transaction once, followed by some
number i, 0 <= i <= n, of object operations, and concluded with one abort or
one end transaction. Path expressions cannot solve this problem; ad hoc
solutions are required.
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CHAPTER 7

PERFORhANCE EVALUATION OF THE ZEUS SYSTEM

This chapter describes the approach followed in the performance
evaluation of the Zeus system. The goal of this performance evaluation work
was to:

(1) Develop and illustrate modeling of recovery mechanisms and faults in
distributed systems;

(2) Illustrate how to measure differential cost of introducing recovery
mechanisms into distributed system designs. The performance evaluations
focus on measuring the differential cost of introducing recovery
mechanisms in terms of degradation in response times and throughputs of
various job classes;

(3) Illustrate approaches for comparing various design options of a recovery
mechanism for an application environment's fault characteristics and then
selecting an option based on the results of such comparisons;

(4) Evaluate some commit protocols under various workloads and fault
characteristics of the operating environment.

The guidebook presents a detailed description of how to model failures
and recovery mechanisms in a distributed system using PAWS and Path Pascal.
The kinds of failures considered are site crashes, disk crashes, link
failures, message loss, and duplication of messages. The recovery mechanisms
considered are commit protocols, reliable remote procedure calls, atomic
actions, stable storage, careful replacement, object replication,
checkpointing, and rollback.

The overhead introduced by a recovery mechanism is an important
evaluation criterion; in order to measure this the simulation models without
both the recovery mAchanism and the system failures are executed, next the
models with recovery achanisms but without system failures are executed, and
finally the models containing both the recovery mechanisms and the failures
are executed. The degradation of performance from the first to the second
evaluation indicates the effects of overhead because of introducing recovery
mechanisms during the normal operations on the performance. The degradation
of performance from the second to the third evaluation indicates the effect of
overhead in taking recovery actions due to the failures conditions introduced
in the system. This depends on the rate of fault injection.
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The comparative evaluation of various design options of a recovery
mechanism is important in selecting one of the options for a system design
depending on the failure characteristics Of Its application environment and
the characteristics of the jobs executed by the system. There are two parts
of the comparative evaluation. The first part consists of evaluating each
design option of a given set of failure rates in the system, starting with no
failure case. The second part consists of determining the effect of these
options on different job categories in the system. In the next section we
describe a set of generic job categories in the system. The models are
executed with a workload consisting of a variety of such jobs. The
performance measures are collected for each job class. This helps in
determining which job classes are more sensitive to the the various design
options and under what kind of failure environments. Thus, given certain
application system along with Its job mix characteristics and failure
environment, the designer can determine which option is most suitable for
implementation.

As an example to illustrate these ideas we have performed comparison of
the Presumed Abort vs. Presumed Commit protocol, and one-phase vs. two phase
commit option. These evaluation results are presented in the last section of
this chapter.

7.1 Model Overview

As described in the previous chapter, there are three components of a
performance model -- environment, system structure, and workload. The
environment captures the standard hardware and software as well as the effect
of the physical environment. The Zeus environment included the following:
configuration of the system, the performance attributes of its components, and
operational conditions such as failures and their rates. The system structure
captures the architecture of the parts of the model, both hardware and
software, that are being analyzed. For example, the Zeus object managers with
their consistency and recovery mechanisms are part of the system structure as
are the command and control object managers. Finally, the workload captures
the pattern and frequency of usage of various resources in the system as
derived from the execution of the application systems. This includes the
definition of the classes of command and control jobs. The components of the
model used for this effort are described below.

7.1.1 Model Environment

The model's environment consisted of the system configuration and fault
injection function. The system configuration consisted of seven sites
interconnected by a local area network. Rather than model the intricacies of
transmission on a local network (e.g., link control, medium access control,
physical control, etc.), a delay with an exponential distribution that
approximated the time of an end -to-end message was used. The hardware
configuration at each site was identical. It consisted of one cpu and five
disks. Two of the disks were configured to be a stable disk (i.e., the
contents of the two physical disks were identical). A central server model
was used, with a process requesting CPU usage and then disk usage.
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All failures were assumed to be clean. The types of faults injected were
site crashes and disks. It was assumed that a disk crash caused the storage
medium to be corrupted and resulted in the database being reconstructed using
some combination of restoration from an archival version and processing based
on a log. The failure rate was varied from no failures, to a few failures,
and finally to a couple of order of magnitudes increase in the number of
failures. This provided a base case of operation in a fault free environment
to compare with the expected case of a few faults and an extreme case of many
faults.

7.1.2 Model System Structure

The system structure consisted of a number of object managers assigned to
different sites and a number of transactions that could be initiated from
different sites. Each site had a process/transaction manager to handle
operations such as begin transaction, end transaction, and abort transaction.
The object managers that performed C2 operations were instantiations of the
generic object manager for exemplary C2 objects. Each object manager
performed operations such as concurrency control, commit processing, and
transaction undo. The amount of time to do an object manager specific
operation was determined based on the number of objects accessed by an
operation (see workload discussion). In addition, each site had the
equivalent of the operating system support for providing transparency of
object and object manager location. The details of these object managers and
functions are contained in the appendix of the system designers guidebook.

Table 7-1 describes the configuration of the C2 object managers for the
performance evaluation. For each object manager the following information is
listed: the name of the object manger (e.g., the type of object managed), the
number of instances of objects, the sites where an instance of the object
manager exists, and whether or not instances of objects that are managed at
multiple sites are copies that are maintained with strong consistency. The
names of the sites have the following meaning: TACC is tactical air command
center, CRC is control reporting center, ASI is air squadron 1, and AS2 is air
squadron 2. There are three additional sites that have none of the listed C2
object managers. They are FACPI, FACP2, and FACP3 (forward area control
posts). Transactions may originate from any of the sites.

Table 7-1. C2 Object Manager Configuration

Object Manager Number Objects Sites Replicated

Intelligence 80 TACC, CRC yes
N .vigation 80 TACC, CRC yes
Supplies 80 AS1, AS2 no
Mission Plans 120 TACC, CRC, AS1, AS2 no
Squadron 40 TACC, AS1, AS2 no
Weather 80 TACC, CRC no

7.1.3 Model Workload

In evaluating the performance of the Zeus design, we were interested in
examining the characteristics of the system with a wide variety of different
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job types. We were particularly interested in the effect of the different
recovery mechanism design options on the performance of different job classes.
However, since no application software was available, a number of generic
scenarios were defined in terms of several performance-affecting attributes.
Four job attributes and two possible values for each attribute were defined as
follows:

o Duration (short or long) - The total number of type manager operations
executed by a scenario. The difference between "short" and "long"
scenarios is about an order of magnitude.

o Number of Objects Accessed (few or many) - The total number of objects
which are either read, written, or read and written by a scenario. The
difference in magnitude between "few" and "many" object accesses is about
an order of magnitude.

o R/W Ratio (R/O or update) - This indicates whether or not the scenario does
any update operations on ANY of the objects that is accesses. R/O jobs do
not do any update operations whereas "update" jobs do at least one.

o Object Distribution (single- or multi-site) - If all the objects accessed
by a job reside on a single host (not necessarily the same one that the
scenario is running on), then the value of this attribute is "single-site",
otherwise, it is "multi-site."

Of the sixteen possible generic jobs classes that may be obtained by
substituting values for these four attributes, eight were chosen based on
information about existing C2 applications. Table 7-2 summarizes the
attributes of these eight jobs and defines an instruction mix distribution for
them. The percentage figures in the job mix column indicate the percentage of
the total number of jobs resident in the system at any given time (after a
steady-state has been reached).

Table 7-2. Job Mix Description

Job Job # Objects R/W Object
Number Mix (M) Duration Accessed Ratio Distrib.

1 15 short few R/O multi-site
2 15 short few R/O single-site
3 15 short few update single-site
4 15 short few update multi-site
5 20 short many update multi-site
6 5 long few update multi-site
7 10 long few update single-site
8 5 long many update multi-site

By way of justification for the job mix given here, notice the following
things:
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o 80% of the concurrently executing jobs are short - that is, they perform
relatively few operations,

o 75% of the Jobs have a relatively small working set (access only a few
objects),

o Many of the jobs (30%) are read-only.

Although this method of selecting an example workload may seem somewhat
ad hoc, it is expected that it will provide valuable performance data that is
sufficiently accurate to guide the design process. More importantly for our
present purposes, it provides a concrete example of the use of instruction
mixes in real design situations.

For each job description in the mix, a number of exemplary jobs were
required. Synthetic jobs were used since we were modeling a pre-operational
systems. These are artificial jobs for which the resource usage is similar to
the expected characteristics of some future real jobs or to existing jobs
being run on other systems.

Synthetic jobs are easier to obtain than the real applications because
they summarize the resource utilization of the jobs that they are
characterizing. Local CPU usage, for example, is usually represented by a
simple idle loop in a synthetic job and remote requests are abstracted so that
the parameters of the calls are simplified or left out entirely.

As an example of a synthetic user-level scenario from the Zeus
performance analysis, consider the following job:

Begin Scenario
Read Intelligence
Read Navigation
Read Weather
Read Mission-Plan
Computation
Update Mission-Plan

End Scenario

It is assumed that "Intelligence", "Navigation", "Weather", and "Mission-Plan"
are objects (or groups of objects) in the command and control system. The
semantics of the scenario Is meant to resemble a so-called "Mission Control"

job which is a typical (although much simplified) job being run on other C2
systems. The scenario reads the appropriate data, does some local computation
to determine how the plan of some in-progress mission should be changed, and
then updates that mission plan.

Notice how this synthetic job represents the basic performance-affecting
features of the scenario in a very stylized and simplified way. The meaning
and functionality of the local computation is not specified and neither are
the parameters of the remote calls. A complete description of the jobs is
contained in the appendix of the system designers guidebook.
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7.2 Goals of the Example Evaluation

The example evaluation is performed with the objective of evaluating
certain design options for commit protocols. Specifically, in this evaluation
we investigate the Presume Commit vs. Presume Abort option, and one phase
commit vs. two phase commit option.

The Presume Abort protocol implies that In the absence of any information
about a transaction's commitment at its coordinator, it is presumed that the
transaction was aborted. This means that in case of commiting a transaction,
the coordinator must keep the transaction's commit status information until it
is certain that no status queries for that transaction would be received in
future. Analogously, the Presumed Commit protocol implies that in the absence
of commit information, a transaction is presumed to have committed. Thus,
when a transaction is aborted, the coordinator must maintain its abort status
until it is certain that no more status queries for that transaction would be
received in future. In a fault-free environment where most of the transaction
get committed, it looks more attractive to follow the Presumed Commit
protocol; this avoids synchronous disk writes for a large number of
transactions. On the other side, if a system encounters large number of
failures that lead to the majority of transactions to be aborted, it looks
more attractive to use the Presumed Abort protocol. One can observe that as
the failure rate in a system is increased starting with a fault-free system,
there exists a point of inflexion where it is more advantageous to use the
Presume Abort protocol. This point of inflexion can be obtained by executing
the model with varying rates of fault injection.

Another design option that we investigated is one phase vs. two phase
commitment. The one phase commit protocol implies that in response to every
update operation on an object, its Type Manager creates a new cohimit pending
version of the object on the stable storage. The object remains in the commit
pending state until the Type Manager receives the decision about the
commitment/abortion of the client transaction. The commit pending state
implies that the object can not be used by other clients until the commit
decision is received from the coordinator. A coordinator failure while an
object is in the commit pending state will cause the object to remain
unavailable to other clients. The period during which an object is in the
commit pending state is called its in-doubt period. The two phase commit
protocol tends to reduce this window of vulnerability. In this protocol, e h
update operation creates an uncommitted version of the object. At the end of
a transaction, its coordinator executes a protocol which first attempts to
make every object accessed by that transaction commit pending. After this
phase, it makes the commit/abort decision. The two phase commit protocol
requires additional messages, but it tends to reduce the window of
vulnerability.

Obviously, the one phase commit protocol is preferred if there are few
failures in the system; however, in an environment where the failure rates are
high, it is more desirable to use the two phase commit protocol. The two
phase commit protocol introduces overheads in terms of extra messages and disk
1/Os. These overheads may not be justfiable for short transactions. In our
example evaluations we investigate how to determine which option would be most
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suitable for a given application.

7.3 Summary of the Evaluation Data

To do the evaluation we chose to hold the hardware architecture constant,
the software object manager to processor allocation constant, and the
workload generation constant. A set of five fault injection rates were
defined. They varied from no faults to 12.8 fault per 100 seconds. The
system structure was varied by using different commit protocols between
the generic object manager and process/transaction manager. Four
different commit protocols were modeled -- one phase presumed abort, two
phase presumed abort, one phase presumed commit, and two phase presumed
commit. The model was run for each protocol for each failure rate until
1000 transactions had successfully committed. Some of the highlights of
the analysis are summarized here.

Figure 7-1 shows the effect of a commit protocol on the throughput of the
overall workload as the failure rate increases. The overall transaction
throughput summary demonstrates the performance degradation due to the
increasing occurrence of faults. There are three main points to note --
the effect of presumed abort versus presumed commit, of two phase versus
one phase, and of timeout periods. Presumed commit protocols outperform
presumed abort protocols for low fault rates as expected. But for one
phase protocols, the presumed abort protocol outperforms the presumed

"commit protocol when the fault rate execeeds 5 faults/lO0 seconds. This
indicates that it may be desirable to have an adaptive commit alogrithm
that uses a presumed commit protocol when the environment is not faulty
and switchs to a presumed abort protocol when a fault rate surpasses a
given threshold.

One phase protocols outperform two phase protocols. This is not
surprising for environments with a low fault rate. It Is somewhat
surprising for environments with a very high fault rate. This can be
explained by two observations. First, the slope of the curve of a two
phase protocol tends to decrease more rapidly than that of one phase
protocols indicating that there may exist some fault rate at which two
phase protocols do indeed outperform one phase protocols. Second, the
model of the time duration of a device failure is unrealistically short.
This is due to the excessive time and resources that would be required to
run a simulation that accurately modelled a device's downtime. The effect
on a one phase commit protocol of a longer downtime is to increase the
size of the window of vulnerability (or In-doubt period) of a server to
the failure of a coordinator. This would increase the period during which
a set of objects would be indefinitely blocked, thereby reducing the
potential system concurrency and therefore throughput.

The timeout period which an object manager holds a lock for a transaction
using a two phase commit protocol can unduly effect the throughput. A
short period may result in many transactions being aborted unnecessarily.
This is explained as follows. As the multiprogramming level increases,
the concurrency level of the object managers increases. When the objects
are reliably manipulated there are extra disk accesses to store stable
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states. The increased number of disk accesses results in a bottleneck at
the stable storage device. This results in a longer period of time that a
transaction waits for a response from an object manager and that an object
manager holds a lock for a transaction. As the stable storage request
queue grows, the number of aborted transactions increases. Note that this
does not happen for one phase commit protocols because objects are placed
in a commit pending state following their first access, nor does it happen
for environments with a high fault rate because the multiprogramming level
is reduced. This problem can be avoided for a two phase protocol, if
either the multiprogramming level is reduced or the timeout period
increased. This explains why the throughput of the two phase presumed
abort run with no faults is as low as the few faults run.

Figures 7-2 through 7-5 show the effect of the commit protocol with
varying fault rates on the workload mix. It demonstrates that as the
fault rate increases shorter transactions tend to dominate the mix of
successful transactions. Short appears not to be sensitive to the number
of objects accessed, but to the number of operations on the set of
objects. Further, the overhead of a two phase protocol did not seem to be
warranted for short transactions under any fault rate.

In this chapter we have presented the goals of the example system
evaluation, the description of the example system, and the evaluation of
some commit protocols under various failure characteristics of the
operating environment. A detailed description of this evaluation is
presented in the guidebook.

Figure 7-1. Effect of failure rate and commit protocol on throughput.
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Figure T-2 T -5. Effect of failure rate and comit protocol on job mix.
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CHAPTER 8

FUTURE DIRECTIONS

The long range goal of research on distributed system recovery mechanisms
is to develop a methodology that allows a system designer to select an
appropriate set of recovery mechanisms for a given system environment and
workload. The work done for this contract has created a foundation for this
goal. This report has presented a summary of that work. The details of the
work are reported in the system designers guidebook. There are a number of
areas which warrant further research. In this chapter, we discuss four areas
-- system structuring, analysis and validation techniques, design
specifications, and a designer's workbench.

8.1 System Structuring

System structuring topics to explore include the following: advanced
studies in reliability techniques, reliable process oriented systems, the
impact of failures on system security, implementation issues for object
oriented systems, and distributed programming environments. Advanced studies
inco reliability techniques can be conducted in either an application specific
or appl~cation independent manner. An application specific approach examines
the requirements of a specific application and produces results that are very
appropriate for a specific class of applications. There is the potential
drawback that the results may not be generalizable to other classes of
applications. The goal of research in this area is to develop techniques that
provide increases in the performance and reliability of recovery mechanisms
for distributed command and control applications. The development of
non-serializable transaction processing techniques that take into account the
semantics of command and control operations is a fruitful area for
exploration. This research may be pursued either through detailed simulation
or experimental evaluation.

Research into generic reliability techniques has the goal of producing a
handbook of distributed system recovery mechanisms. The handbook would
describe the performance and reliability of generic recovery mechanisms, and
identify what mechanisms are appropriate for what kind of applications. There
are two avenues of investigation. The first is to develop new algorithms,
analyze their performance and reliability attributes, and determine for what
applications they are useful. The development of a general theory of
non-serializable transaction processing based on the semantics of operations
and/or probabilistic decision making is an example of this kind of
exploration. Algorithms and strategies to dynamically partition, assign, and
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reconfigure objects that result in increases in performance and reliability
are another example. The second is to do a detailed study of existing
mechanisms. A study could compare for the management of recoverable objects
different techniques such as differential files, logs, and careful
replacement; for reliable transactions the effect of concurrency, deadlock,
timeouts, and failures in conjunction with commit protocols; and for
replication management the effect of different levels of replication and
network partitions on consistency and recovery techniques. These explorations
may be done either through the use of detailed simulation or experimental
evaluation.

The work done on this contract has focused on object oriented system
designs. Many of the existing systems have been developed with a process
oriented structure. There are two possible areas of exploration. The first
considers the application of object oriented design and recovery to real time
systems, a set of applications that have been traditionally developed using
process oriented techniques. The second considers existing and new recovery
techniques for reliable process oriented systems. The techniques can be
explored through detailed simulation or experimental evaluation.

Security is one area of operating system functions that this work did not
explore. Existing security policies are based on centralized management
techniques; it is assumed that a system is either running or stopped. But in
a distributed system it is possible for some system components to fail and for
the rest of the system to continue operating. The question arises as to what
is the impact of failures on security.

Zeus, an object oriented design of a distributed system, was developed
and used for modeling in this contract. It was demonstrated that object
orientation provides a number of advantages for recovery. There are a number
of unanswered questions about how a reliable object-oriented distributed
system should be implemented. There are two kinds of problems associated with
a development effort for building a Zeus-like system. The first aspect is
related to certain generic problems in implementing objects. Examples of
these questions include how to efficiently implement functions, such as
transparency of location, replication, failures, and concurrency. The second
kind of problems are related to the software development environment such as
the selection of appropriate operating system kernel, programming language(s)
and tools such as compilers, linkers, loaders, debuggers, etc. The software
selection is a difficult task because of the small number of languages and
tools that exist for distributed environments. This is a critical problem
because the failure to obtain the proper tools may require additional effort
in building such tools. Building a Zeus-like system on some commercially
available workstation along with its operating system such as LNIX(1) may
require tailoring of the kernel functions to facilitate efficient
implementation of recovery mechanisms. Such modifications to the host
operating system are engineering research problems which need to be
investigated.

(1) UNIX is a registered trademark of Bell Laboratories
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Distributed programs are difficult to develop. One approach to easing
their development is to use an object oriented approach combined with a run

time environment that provides transparency as described above. A

complementary approach is to integrate high level non-procedural constructs

into an object oriented environment. This further eases the difficulty and

time required for developing distributed programs, resulting in an increase in

programmer productivity. There are several research topics associated with

such a distributed programming environment, including: non-procedural
language constructs, translation of non-procedural constructs that may include

conditionals into sequences of operations on objects, and the partitioning and

assignment of objects in a distributed environment.

8.2 Analysis and Validation

The design evaluation methods cover system attributes such as

reliability, performance, and functional correctness. There are several

directions for future research and development in the area of design

evaluation methods.

In the area of performance modeling, there is a need to investigate

analytical models, possibly based on Markov chains, of distributed system

recovery mechanisms and to develop analytical techniques to predict the

performance of reliable and survivable distributed systems using these models.
Modeling of checkpointing, rollback, commit protocols, and replication

management protocols should be included in this effort. An interesting area
of investigaion could be development of analytical models of protocols for

replication management under weak consistency requirements. The development
of analytical models that faciliate both performance and reliability

evaluations and their interactions in a fault tolerant system is an important
research area. The performance evaluation of the example system in this

effort is based on simulations using PAWS. Our experience in this effort
indicates that it is desirable to have an advanced simulation language that

provides convenient mechanisms for modeling faults and their effects in a

distributed system. For example, a language construct that stops progress of

all computations associated with a failed component would be useful.

In this effort, the work related to the application of program

verification techniques focused on the construction of recoverable objects at
a single site. The verfication of protocols for constructing distributed

recoverable objects using program verification techniques such as Gypsy is not

completely addressed in this effort. The problem of protocol verification

needs a significant level of additional work. In this contract we propose an

approach using Finite State Machines and interval logic to reason about the

correctness of such protocols. In the system designers guidebook this method

is developed and illustrated using an example. This method appears promising

because it is simpler than program verification techniques. Efforts are

needed to develop a formal theory for the verification of distributed system
recovery protocols using this method. It should then be possible to build
some automated tools for applying this method.
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8.3 Formal Methods for Design Definition

One of the important features desired in a design definition langauge for
reliable systems is an exception condition handling model. Concurrent System
Definition Language, which does not have this feature, can be extended to
include an exceptional handling model. Formal specification of functional
requirements along with their performance and reliability characteristics is
important during the various design phases. It would be interesting to
investigate such a specification langauge in the context of Ada or CSDL.

8.4 System Designers Workbench

The system designers guidebook presents a set of techniques and tools for
evaluating reliable distributed system designs. These tools include PAWS for
performance evaluation, NetRAT for reliability evaluation, Gypsy for formal
verification, and Path Pascal for functional simulations. One can envision a
system which integrates these tools into a designers workbench system which
facilitates the convenient application of these tools to distributed system
design expressed in some formal design langauge. This workbench would
automatically translate a design expressed in the design langauge to the
appropriate evaluation model required for an evaluation tool. It would also
guide the designer during the analysis procedure and ask questions regarding
any information that is necessary for evaluations but not specified in the
design.

8.5 Recommendations

Distributed processing research is in a state of flux. There are an
abundant number of concepts about how to develop systems and what functions
system should contain. However, there is a shortage of experience in applying
these concepts in the actual development of systems. The insight that one can
gain from the experimental evaluation of a system differs dramatically from
what one can determine from modeling and analysis. The data and subsequent
insight that is needed to make significant progress can be fostered only
through the actual observation of a phenomena. Therefore, it is strongly
recommended that work be continued on the general topic of system structuring
using experimental evaluation. To better ensure the relevance of future
results, we recommend an approach with two thrusts that may require the
participation of multiple organizations. One thrust examines command and
control applications in detail, resulting in a detailed design of a
demonstrable subset of a command and control application. The other thrust
pursues the experimental evaluation of generic reliability techniques using
the above application as a test vehicle. The implementation should provide an
object based distributed operating system, the use of non-procedural language
constructs, and tools that aid in the partitioning and assignment of objects
in a distributed environment. The experimental evaluation should provide data
as to how the recovery mechanisms, object-oriented operating systems, and
non-procedural language constructs support distributed command and control
applications.
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1.1 INTRODUCTION

Concurrent system design is an engineering activity which requires software
engineering technology comprising a design methodology, design methods and
languages, and tools to automate its procedures. This chapter presents
methodological principles and linguistic support for engineering
constructively correct concurrent system designs. The Concurrent System
Definition Language (CSDL) is based on a formal model of computation, giving
it both rigorous foundations to support the less formal creative process, and
mechanical means, such as mapping functions, of supporting system engineering.
CSDL integrates software development techniques which have not been combined
before (data abstraction, information hiding, temporal logic, Dijkstra's
guarded commands) allowing designers to create and reason about data,
algorithms, and communication architecture. CSDL contains both a description
and a specification language, permitting designers to carry out the entire
design process in the same syntactic and semantic environment.

CSDL is a collection of seasoned techniques, mechanisms and language
constructs that have not been combined before. It is rewarding to discover
that many significant individual contributions to software design can be
integrated into a single system without major clashes, and that they do
function in an integrated way to provide the desired reasoning vehicle for
constructing verifiably correct designs. It is also rewarding to discover
that even when CSDL is used informally, it succeeds in helping designers
produce more robust designs and have more control over the design process.

CSDL succeeds in managing design complexity by encouraging, almost forcing, an
architectural view of systems. This architectural view is compatible with
both top-down and bottom-up design styles; in each case a collection of system
elements is "hooked together" to construct a system that satisfies a
specification. CSDL also succeeds as a means of producing implementation
blueprints because it has constructs for expressing data structure, procedural
behavior and communication architecture.

A major part of detailed design of the Zeus operating system was done using
CSDL. These designs are presented Volume 11 of this guidebook.

This chapter presents CSDL's computational model and model of system
architecture, its methodology and language constructs, an example using it and
some possible directions for its enhancement.
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Some requirements we identified for a software engineering package are based
on our recognition of software engineering as an instance of engineering in
general, and our understanding of the engineering problem. They are:

1. A well-defined theoretical model of computing to support a rational,
creative software design and the development process. The model
constitutes scientific underpinnings that define the way engineers think
about both the software product and the methods and components used to
build it.

2. Technical methods for use by individual developers in engineering a
partial or complete software system design. These are methods, such as
data abstraction, which the individual practitioner applies to the design
task, not methods such as version control or configuration control that
are applied to managing whole projects.

3. Support for creative freedom and realistic analysis of correctness,
feasibility, and economy of alternatives. The models, methods and
languages the project develops must accommodate both the creative ideas
that experienced designers get, and the analytic methods they use to
determine the effects of their ideas.

4. Techniques to manage and reduce the complexity of the design process, the
resulting design and the design document. The technical methods must
include facilities for decomposing the system design task so that it
becomes intellectually manageable.

5. A design language that presents a software system design in the form of a
description explaining how the system is built up from smaller pieces, and
how those pieces are connected, along with a specification that explicates
the expected observable behavior of the system, its parts, and the
mechanisms that connect them. A system's description constitutes the
blueprint of components and interconnections from which it is built; its
specification presents the relevant properties of the device as a whole,
of its parts, and of the interconnection mechanisms.

6. A design notation that expresses the product's specifications and
descriptiX,% in the Lerms of the implementing technology. A detailed
design is solution oriented, so it is expressed using statements about the
processes, input and output values, algorithms and memory of software
technology, not the user interfaces, applications packages, sensors,
actuators, or transducers of user requirements technology.

Other requirements for the CSDL software engineering package arise from the
fact that it is meant to be used by people. They include:

o The models and languages must have intuitive appeal to software designers
and programmers.

o The methods must be automatable, so that machines, not humans, can deal with
detail.
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These requirements led to the development or adoption of:

1. A formal model of sequential and concurrent computations.

2. A system model that characterizes the building blocks with which systems
may be designed.

3. Methodological principles and guidelines that define desirable properties
of the design activity, the design language and the design itself, and
make procedural suggestions for carrying out the design process.

4. Technical methods essential for engineering software. They are, for
example, data abstraction, procedural abstraction, Dijkstra's constructive
approach, and the like.

5. A description language - a formal notation for describing how a system is
built up from pieces and how those pieces are connected. Its semantics
are based on the model of computation.

6. A specification langauge - a formal notation for documenting the expected

behavior of a system description. Its semantics are based on the formal
model.

7. Analytic methods for investigating operational properties such as
performance, reliability, or security of alternative functionally correct
system designs.

These elements are applied to detailed design, development phase whose work
product is a design documenting a system's logical architecture, its paths of
information flow, the data type of each system object and the behavior of the
system and each of its modules. A detailed design expresses what will
actually be implemented. Each object in the design -- module, data object,
procedure, or information flow path -- will exist in the implementation,
though the object's physical realization may be different from its logical
design. For example, a type operation designed as a procedure may be
implemented with in-line code.

The remainder of this chapter is organized as follows: Section 1.2 presents
CSDL's underlying formal models of computation and system architecture.
Sec.tion 1.3 explains the CSDL design methodology and presents the major
linguistic features that support it. Section 1.4 presents the CSDL constructs
for describing and specifying system designs. Section 1.5 is an example
system design. Section 1.6 draws appropriate conclusion, outlines possible
improvements and suggests direction for future work.
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1.2 MCDELS

Both CSDL's computational model and its system model define ways that people
can think about the software they build. The computational model is a
formalized, mathematical abstraction of the phenomena that an engineer
manipulateA when building an artifact. It is the vehicle for theoretical
work. The system model is qualitatively different. It characterizes the
abstract building blocks of a concurrent system design. Thus, the system
model introduces conceptual constraints on the model of computation, implying
that CSDL's computations will not be realized in all the ways that the
computational model allows, but only in those ways which can occur on this
conceptual architecture. CSDL's computational model was used in developing
the language and in presenting it in [FRAN83a] and [FRAN83b]. In this
section, the language is explained more informally so the reader may choose to
skip Section 1.2.1 However, the system model (Section 1.2.2) is used in the
remainder of this chapter.

1.2.1 Computational Models

CSDL's computational model formalizes the concepts needed to talk about the
structure and observable effects of a large class of programming mechanisms.
Our goal is a precise and rigorous model that expresses the essentials of the
things system engineers work with simply and intuitively. Precision and rigor
are necessary if the results of reasoning in the model are to be trusted.
Simplicity and intuitiveness are necessary if the model is to be adopted by
people whose task is to build things, not to philosophize about them.

Section 1.2.1.1 presents a model of sequential computations; Section 1.2.1.2
presents a model of concurrent computations and Section 1.2.1.3 explains
system histories which are used to reason about system behavior.

1.2.1.1 Sequential Computations

Our model of sequential computations is a very conventional one based on the
primitive notions of states and transitions. This model appears to be
sufficient to define program semantics in terms of effects on data and
parameters.

A data object x is an entity that can take on any value V(x) of a specified
set of values T(x). The state of x at some point during its lifetime is its
value V(x) at that point. Given a set X of n objects xl,...,xn, where each xi
is of type Ti, the state q(X) at some point in the lifetime of X is given by
the vector of values of the objects

q(X) = < V(xl),...,V(xn) >

at that point. X is called an object space, and the set Q(X) of all such
vectors is called the state space of X.
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A single terminating sequential program P defined over an object space X
effects a state transition on X in that it is invoked with X in one state q(X)
and terminates with X in some state q'(X). The effects of P may be expressed
by a binary relation [P] over Q(X). The interpretation of this relation is
that the pair < q(X), q'(X) > is an element of [P] if and only if P is
guaranteed to halt when invoked from q(X), and q'(X) is one of the states in
which P can halt when invoked from q(X). With this interpretation it follows
that the dcain of [P], that is, the set of all states that can be first
elements of pairs in [P], is exactly the set of initial states from which
termination is guaranteed.

An execution of P over X may be modeled by a sequence of states h(X,P):

h(X,P) = qO(X); ... qn(X); ...

where qO(X) is the state of X at the invocation of P. If qO(X) is an element
of the domain of [P) then h(X,P) is finite, and if in addition qn(X) is the
last state of h(X,P) then < qO(X), qn(X) > is an element of [P].

Different designs of a program that has a given desired effect may be
distinguished by their possible execution sequences, which reflect the
intermediate states a particular design will pass through while attaining the
desired over-all effect.

1.2.1.2 Concurrent Computations

The sequential model does not deal with the notion of time or of an external
environment with respect to which a program causes change through time. These
phenomena are treated by CSDL's model of concurrent computation.

A concurrent computation is modeled as a collection of m sets of object spaces
X1,...,Xm, with a program Pi defined over each Xi. The object spaces Xi may
overlap or have elements in common. This occurs in a CSDL design when two
programs share communication objects. Objects may move from space to space;
that is, an object may "instantaneously" vanish from space Xi and appear in
space Xj. This occurs in a CSDL design when one program dynamically creates a
process and gives some of its objects to the newly created process. Attempts
by multiple programs to operate on a shared object are nondeterministically
serialized. The transfer of an object from one space to another is serialized
with all other operations. With the exception of serialization of operations
on shared objects, the programs Pi over the object spaces Xi proceed
asynchronously and independently of one another.

Object spaces may vanish, and new ones appear throughout the lifetime of a
concurrent computation. This is expressed in a CSDL design by dynamic process
creation and destruction. The computation exists as long as at least one
space exists. When a new space appears, its objects may all be new or, as
stated above, some of them may come from an existing space. When a space
containing such "borrowed" objects subsequently vanishes, the borrowed objects
are returned if the "lender" still exists. Otherwise they vanish. That is,
if a program dynamically creates a process, gives control of some of its
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objects to the new process and then destroys the process, the objects it
yielded control over return to its control.

This model of concurrent computations introduces complications into the model
of sequential computations. A single space X with program P can have objects
disappear and appear throughout its lifetime as it creates and destroys
processes. Also, objects that are shared with other spaces can appear locally
to change state asynchronously with, and without being manipulated by P. That
is, information enters from P's environment.

1.2.1.3 Histories

An execution sequence h(Xi,Pi) of a program Pi over object space Xi is a
particular (possible) history of Xi. The set H = { h(X1,P1),...,h(Xn,Pn) I is
a possible history of the concurrent computation. H may have some elements
that appear and vanish and others that are infinite; this corresponds to some
object spaces appearing and vanishing while other object spaces last forever
once they are created. The only restrictions on state and rate of the various
members of H are those that arise from shared and moving objects. In
particular, although each history h(Xi,Pi) is totally ordered, there is only a
strict partial order, precedes, among states in H. The precedes relation is
the basis for the notion of temporal order. The precedes relation may be
defined recursively as follows:

(1) Within a history h(Xi,Pi) the state qj(Xi) precedes qk(Xi) if and only
if j < k.

(2) If x is shared by spaces Xi and XJ, if qm(Xi) and qm+1(Xi) are
consecutive states in h(Xi,Pi) corresponding to a change in x, and if
qk(Xj) and qk+1(Xj) are consecutive states in h(XJ,Pj) corresponding to
the same change in x, then qm(Xi) precedes qk+1(Xj).

(3) If qp(Xi), qr(Xj), and qh(Xk) are states anywhere in the system, and if
qp(Xi) precedes qr(Xj) and qr(Xj) precedes qh(Xk), then qp(Xi) precedes
qh(Xk).

The precedes relation is partial rather than total because there can exist
distinct states qk(Xi) and qm(Xj) neither of which precedes the other. For
example, suppose Xi and XJ share x, at.:. C7urther suppose that Pi changes x from
2 to 3 and later PJ changes x from 3 to 4. All states of Xi up to the change
from 2 to 3 precede all states of Xj after that change, and all states of Xj
up to the change from 3 to 4 precede all states of Xi after the change. But
the states of Xi after the change from 2 to 3 but before the change from 3 to
4 have no defined relation to the states of Xj in the same period; they are
incomparable.
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1.2.2 System Model

Our system model defines a conceptual architecture for concurrent systems. It
limits the universe of designs for realizing a specified computation to those
that can be defined within such an architecture.

A concurrent system is a collection of machines which operate concurrently and
autonomously. They communicate asynchronously by passing information.
Internally, a machine consists of data objects and procedures and/or
subordinate machines to manipulate these objects. A machine containing only
procedures constitutes a sequential locus of control. A machine containing
subordinate machines constitutes several autonomous control sites. If the
system's architecture is viewed as a tree, its leaves are all sequential
control sites.

Machines may also contain machine pools from which machine instances may be
created and destroyed as the system runs.

Systems are evolutionary. The initial system configuration is described by a
distinguished machine, SYSTEM. SYSTEM may contain other machines and machine
pools. Each machine that SYSTEM contains may, in turn, contain other machines
and machine pools. The initial system is, then, the configuration consisting
of SYSTEM, all machines it contains, and all the machines they contain. A
system evolves by dynamic creation and destruction of machines from pools.
Since every pool element may contain machines and machine pools, creating a
new machine dynamically may, in effect, create a new subsystem.

A system's communication architecture is the set of connections among its
machines. Connections are formed among active objects, objects whose values
can change without being manipulated by the machine which contains them.
Since machines cannot manipulate each other's objects, a communication link is
set up by connecting an active object in one machine to a complementary
(roughly same type, opposite direction) active object in another. The sending
machine puts a value in its local active object, and that value is
instantaneously transmitted to the complementary active object from which the
other machine can get it by a local operation. Active objects may be
connected to realize point-to-point, multi-cast, fan-in and broadcast
communication architectures. Connected active objects by definition
correspond to shared objects in the computational model, as described in
Section 1.2.1.2.

1.3 METHODOLOGY

CSDL's methodology comprises design guidelines which are a synthesis of
concepts drawn from research on software design. They offer procedural
suggestions for carrying out the design activity. One practical effect of
adopting design guidelines was to include features to support them in CSDL.
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1.3.1 Constructive Correctness

Basically, CSDL advocates building in correctness; that is, using a system
component's specification as a driver for constructing its description. The
constructive design process at every level- begins with a requirements
analysis. At the topmost level these specifications of requirements are
usually arrived at through discussions among designers, requirements analysts,
and customers. The task of designing procedures, data, and machines then uses
these top level specifications as its starting point.

A procedure's functional specifications are obtained by constructing
assertions that define a constraint on valid inputs and the relation between
valid input and desired output. These assertions are defined over the
variables global to, and the parameters of, the procedure. A procedure's
behavioral specifications are obtained by constructing assertions that
characterize state sequences over the global variables and parameters
associated with invocations of the procedure. These assertions express
properties both of individual invocations, such as time performance, and of
sets of invocations, such as mutual exclusion and ordering constraints.

An abstract data type's functional specifications are obtained by presenting a
model of the type, expressed as a set of conceptual data objects, and
constructing assertions that define the input constraint and input/output
relations for each operation defined for the type. An abstract data type's
behavioral specifications are obtained by constructing assertions that
characterize state sequences over the model that are associated with
invocations of the type's operations.

A machine's functional specifications are obtained by constructing assertions
that characterize the relationship between its output sequences and its input
and visible state Sequences. A machine's behavioral specifications are
obtained by constructing assertions that characterize input, state, and output
sequences that satisfy temporal order constraints like mutual exclusion and
liveness and safety properties, and temporal metric properties like time
performance and time-out.

The results of a design step are procedure, data type and machine designs, and
requirements on lower level mechanisms which together imply that the design
meets its specifications. The design process then returns to requirements
analysis and design of the lower level mechanisms. Ideally, design proceeds
in a net top-down fashion. By net we mean that a design step will be finished
before the designs of the lower level mechanisms it uses are finished. This
allows for controlled depth-first exploration and backup when infeasibilities
are discovered. A new level is reached when the procedures and types which
realize primitives of the upper level are to be designed and proved correct
with respect to their requirements.

Machine, procedure, and data type designs are arrived at by procedural
refinement (introducing subprocedures), type refinement (designing an abstract
type model's implementing structure and its operations' algorithms), and
object space partitioning (partitioning a machine's permanent objects into
disjoint subsets, each of which is manipulated by a submachine).
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For example, we recommend these four steps, in this order, for designing an
abstract data type:

o Prepare a data type definition that specifies type's externally visible
behavior and externally accessible operations.

o Design an implementation structure; express the mapping between the
type definition's model and the implementation structure.

o Re-express the type definition's specifications in terms of the
implementing structure, thus preparing the specifications to drive the
design of type operations. The mapping function precisely defines this
transformation.

o Design a data type refiner containing the implementation structure and
procedures to implement the type operations. These procedure
descriptions will satisfy the specifications expressed in terms of the
implementing structure.

CSDL provides the specifications, mapping functions and data type models to

carry out these steps. The process is similar for constructing machines:

o design external interfaces -- public objects,

o specify externally visible behavior in terms of the visible objects,

o introduce private objects, including other machines, to realize that
externally visible behavior.

1.3.2 Object Orientation

The constructive approach guides designers in obtaining correct data types,
procedures and machines by building down. CSDL's second major design
guideline, object orientation, guides designers in building up a system from
correct components. A system is viewed as a collection of data objects and
procedural objects. System construction is the process of combining
previously designed data and procedural objects to meet the system's goals, as
expressed in the system's specifications. Object orientation cuts complexity
because, during system construction, designers deal only with an object's
external interface, as presented by its abstract model and operations (in the
case of an abstract data type), or its public objects and external behavior
(in the case of a machine). The same specifications that drive an object's
constructive design explicate that object's properties and behavior for the
purposes of system construction.
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1.3.3 Complexity Management

Constructive correctness and object orientation combine for a design style in
which complexity is controlled both in the design of individual system
components and in the overall system design, and correctness is maintained
during object design and system design by using specifications as goals.
Complexity management occurs at three levels:

o within a single component:

Every system component -- module, data type, and procedure -- has a
specification; the design which meets the specification is created
separately.

o between a component and its clients:

A component has a public part: its specification and public objects (in
the case of a module) or allowable operations and attributes (in the case
of an abstract data type). A component's private part realizes its public
specification. Modules containing objects which are instances of abstract
data types see only the object's type specification, its allowable
operations, and the attributes they can examine or manipulate. A type's
representing structure and the procedures which implement its operations
are private. Modules interacting with a module see its specification, the
public objects that constitute its visible state, and the public objects
through which they can exchange information with it. The module's
procedures and internal data objects are private.

o among components:

CSDL allows the design and implementation of data types, procedures and
module to be carried out independently of designing the system that uses
all these objects.

1.3.4 Linguistic Support for the Design Guidelines

The table below matches detailed technical methods for constructively correct,
object oriented design with the CSDL features that support each one.
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TECHNICAL METHOD LANGUAGE SUPPORT

1. Design mechanisms to match Data Abstraction Facility
applications Machine "Type" Facility

2. Use data objects of designer Data Abstraction
specified types

3. Object oriented design Machine as uni. of h,.larization
Data Abstraction

4. Refinement Subprocedures
Data Type Refiners
Machine Realizations

5. Constructive Correctness Mapping Function for Data Types
Weakest Precondition Semantics

Linguistic Support for Technical Methods

1. CSDL supplies simple primitives for defining datatypes and communication
mechanisms. These primitives do not presume any particular mechanisms;
rather, they give the designer the freedom to specify and subsequently
design mechanisms that are most appropriate for the problem at hand.

2. CSDL encourages designers to augment built in types with high level,
application oriented types, so that an application system can be designed
in terms of the most meaningful objects for the application.

3. Object orientation conceives of a system as a collection of objects, each
of which performs some task, cooperating to achieve the system's
goals.CSDL has two encapsulating devices -- machines and data abstraction.

4. Refinement - adding design detail in a rational way - is supported with
three techniques:

o subprocedures to refine algorithms,

o data type refiners to implement data type specifications, and

o machine realizations to implement machine specifications.

5. Finally, a constructive methodology for creating designs that meet
specifications rather than testing and adjusting designs until they meet
specifications rationalizes the creative process.
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1.4 CONSTRUCTS AND NOTATION

Language is the concrete tool we give designers. Any mechanism, such as
dynamic process creation, or object, such as the communication port, that
the language cannot express will not be in designs. Any design principle,
like information hiding, that the language does not allow or makes
difficult will not be used. So our goals were that CSDL's notation:

o meet the requirement of supporting technical personnel in creating,
reasoning about, and presenting design specifications and
descriptions in terms of the implementing technology,

o be the vehicle for carrying out a constructive design process that
produces an implementation blueprint,

o facilitate unambiguous communication and permit verification through
rigorous semantics based on formal models.

We also strove to meet general language design goals: readability,
writeability, intuitive appeal for a user community which is comfortable
with programming languages, and succinctness without sacrificing clarity.
This section presents a notation which meets the three technical goals and
is an honest but imperfect attempt to meet the human-engineering goals.

Section 1.4.1 briefly explains the structure of a system definition and
mentions the CSDL constructs for expressing each definition element.
Section 1.4.2 presents the description language for expressing sequential
procedures, and the specification constructs that are applicable to
sequential procedures. Section 1.4.3 presents CSDL's built-in data types
and its facilities for defining abstract data types. The section deals
with both ordinary passive data and with the active data types that
constitute communication objects. Section 1.4.4 discusses machines,
the building blocks for concurrent systems, and the language constructs

needed to specify interactions among autonomous control sites. Section
1.4.5 presents CSDL's documentation format.

1.4.1 System Definition Structure

A system's definition is the union of its description (what components it
contains) and its specification (how its components behave).
Specifications (assertions) and descriptions (declarations and algorithms)
are interspersed in each component's definition. A system definition is
said to be correct if there are proofs (in some sense) that the system
description satisfies the specifications.

CSDL's notation comprises descriptive constructs for stating declarations
and algorithms and specification constructs -- atemporal assertions in the
first order predicate calculus and temporal assertions in a variant of the
Moszkowski-Manna [MOSZ83] temporal logic for specifying hardware behavior.
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1.4.2 Procedures

Procedures, functions, and type operations are described in an algorithmic
language based on Dijkstra's [DIJK76] guarded commands and specified by
atemporal assertions that characterize relations among data.

1.4.2.1 Algorithmic Language

The algorithmic constructs are:

MEANING NOTATION

nooperation SKIP

sequence <statement> ; <statement>

assignment <id list> := <expression list>

procedure invocation <id> (<parameters>)
type operation invocationi <qualified reference> (<parameters>)

non-blocking selection IF B1-->S U...V Bn-->Sn Fl
blocking selection WHEN B1-->S1 I...D Bn-->Sn END

non-blocking repetition I DO B1-->S1 D...DBn -->Sn OD
blocking repetition WHENEVER B1-->S1 ... 0 Bn-->Sn END

The formal semantics of these constructs (i.e., what happens when one of
them is used) are given by a semantic function called the weakest
precondition predicate transformer. These semantics are presented in
[FRAN83a, Chapter 6]. Informally:

No-operation, sequence and assignment have the usual meaning.
Procedure and type operation invocation suspend the caller and
transfer control to the invoked procedure. Procedures may
instantiate objects; upon completion, a procedure's temporary
objects disappear.

Selection and repetition are nondeterministic guarded commands.
Non-blocking selection and repetition have the semantics
presented in (DIJK76].

Blocking selection and repetition can test the same conditions
as the non-blocking varieties and also test whether
communication events (data arrival or departure) have occurred.
Their guards may refer to active or passive objects; at least
one guard should refer to an active object.
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WHEN blocks until some guard(s) is (are) true, then executes the
statement associated with a true guard. Since it is not
required that any of the guards eventually becomes true, the
statement may wait forever.

WHENEVER blocks until some guard(s) is (are) true, executes the
statement associated with a true guard, returns to waiting until
some guard(s) is (are) again true, and so forth. Once it is
entered, there is no exit from this statement.

A procedure description consists of some optional declarations of local
objects and an algorithm described using these constructs.

1.4.2.2 Atemporal Specification

The context for atemporal specifications is an external view of procedures

as functional relations between inputs and outputs. In that context, it

is useful to specify facts about state, such as preconditions, and facts

about behavior such as the precondition/postcondition pair, which express
a procedure's effect. These facts are specified through values of data
objects and changes in those values.

CSDL's atemporal language is first order predicate calculus with
extensions such as a facility for introducing local definitions and
convenience features like a case construct for abbreviating a conjunction
of implications. The language is described in detail in [FRAN83b,

Chapters 3-8]. We divide atemporal assertions into "value propositions"
and "transition propositions". Value propositions characterize state by

asserting static relations among values of several objects (x > y) or

between an object and its values (x < 10 OR x > 10). Transition
propositions characterize state transitions by asserting a relation
between a state and its (not necessarily immediate) successor (X'=X + 1).

CSDL uses two sorts of procedures, machine procedures and abstract data
type type operations. Each sort's specification may contain the following
elements:

Name ( <input parameters> ) RETURNS <type specification>
PRE <value proposition>
POST <transition proposition>
INVARIANT <value proposition>
BEHAVIOR <assertion>

END

The optional RETURNS clause, which is part of the procedure description,

is used for value returning procedures.

In machine procedure specifications, the proposition following PRE is a

precondition which specifies the permissible machine states when invoking
this procedure. In a type operation specification, PRE expresses
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constraints on the parameters and the instance; correct operation is
guaranteed if the precondition is satisfied. The precondition can define
a required relation among the procedure's local objects, between the
procedure's parameters and its local objects, or among local objects,
parameters and global objects. For a type operation, these objects may be
elements of the type's conceptual model rather than actual objects in its
represiating structure.

The proposition following POST is a postcondition which specifies the
relationship between the state of the machine or type instance at
termination and the parameters and state of the machine or instance at
invocation. If there is a return value then the relationship between it
and the parameters and state of the machine or instance at invocation is
also specified.

The optional INVARIANT specifies a relationship among the parameters and
global data of the procedure or type operation that is preserved by an
execution. It must be guaranteed that, if the invariant is satisfied when
the procedure or type operation is entered, then it will be satisfied upon
exit.

The optional BEHAVIOR section allows the designer to express any useful
information about the procedure's function or properties that is neither a
precondition, a postcondition nor an invariant. An atemporal assertion
can, for example, express a resource constraint. A procedure's
performance specifications expressed as temporal assertions (see Section
1.4.3.4) would also appear in its BEHAVIOR section.

In summary, a type operation or procedure's specification is a collection
of atemporal assertions which, minimally, define a relationship between
input and output states together with the constraints on the input. The
intended interpretation is that when a procedure is invoked with the
objects and parameters satisfying its input constraint, it is guaranteed
to terminate with the objects in a state correctly related to the input
state.

1.4.3 Data

Data objects hold all the information a system uses. Machine data are
permanent; they last as long as their containing machine does, though
their values may change over time (for example, a data base). Procedure
data are transient; they come into existence when their procedure is
instantiated and vanish when their procedure terminates.

Data objects are also either active or passive. A passive object
undergoes a value change only when a procedure in its containing machine
manipulates it. An active object may undergo a value change without its
containing machine's operating on it. Intermachine communication occurs
between active objects.
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CSDL provides some built-in passive and active types, and a type
definition facility.

1.4.3.1 Passive Data

An instance of a passive data type changes value only as the result of the
invocation of some procedure or operation within the machine containing
it. The assumption of passivity of objects lies at the heart of the basic
theories for reasoning about a program by looking at its effects on data.
In particular, the power of invariants is due in part to the assumption of
passivity of the objects involved.

1.4.3.1.1 Built-in Passive Types

CSDL has four built-in scalar types: Boolean, Char, Integer and Real.
Type Boolean has the usual value set (TRUE and FALSE) and operations (NOT,
AND, OR, COR, XOR, CAND). Type Char has two operations, "assignment" and
"equality test", and no pre-defined value set. Designers can define its
value set to suit the intended implementation environment. Type Real
denotes the mathematical reals. Type Integer denotes the integral reals,
so every Integer data object is also a Real. CSDL provides the usual
numeric, relational, and boolean operations; numeric, relational and
boolean expressions are formed in the usual way. Initial value
declarations are allowed for all scalar types. Using the abstract data
type facility, fixed range Integer and Real subtypes can be defined.

CSDL provides four constructed types: enumerated types, records,
discriminated unions and arrays.

An enumerated type is a finite set of elements; each element's only
property is its name. There are both unordered and ordered enumerated
types. All of the relational operators (<, >, <, >, =) are defined on
elements of ordered enumerated types but only the relational operation
equality (and, therefore, inequality) is defined on elements of unordered
enumerated types. Assignment is defined on all enumerated types.

A record data object consists of a fixed finite number of data objects,
called fields, which may be of different types. CSDL records are similar
to records or structures in a number of Algol-like programming languages.
Initial value declarations are allowed for entire records and for record
fields.

Discriminated unions provide a facility for working with data objects that
may contain values whose type is one of a finite set of types. They are
similar to variant records in Pascal. A discriminated union's tag field
is set automatically whenever its value field is changed. The tag field
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cannot be manipulated by any other means. The value field may be of any
type.

CSDL provides Dijkstra arrays as the sequence abstraction. An array data
object consists of a set of data objects, all of the same type, that is
indexed by a contiguous range of integers; the set of objects may be
empty. An array's size varies, shrinking when the object with the largest
or smallest index is deleted and growing when an object with an index that
is one more than the highest index or one less than the smallest index is
added.

CSDL provides the array attributes and operations proposed in [DIJK76].
The special array attributes are:

(hibilob) - an integer identifying the (largestismallest) index of the
array.

dom - an integer identifying the size of the array.

The special array operations are:

(highllow) extend - a function which adds a new value to the (toplbottom)
of the array, increases dom by one, and (increases
hibldecreases lob) by one,

(highilow) remove -a function which removes a value from the (toplbottom)
of the array, decreases dom by one, and (decreases
hiblincreases lob) by one,

assignment - of a value to an arbitrary array element, or of values
to an entire array with an array censtructor.

access to arbitrary array elements - in the usual programming language
manner.

DijkstrR arrays are more general than the usual programming language
arrays, so they allow designers to describe more general information
structures such as files, databases or dynamic memory.

1.4.3.1.2 Abstract Data Types

When a language allows designers to augment its built in types with high
level, application oriented types, designers can work in terms of the most
meaningful objects for the application. For example, in a compiler
design, it is more meaningful to manipulate a symbol table object than to
manipulate the more primitive objects that provide the symbol table.
Furthermore, the benefits in complexity management of separating the use
of a high level type from its definition are well documented in [LISK75,
LISK79a, WULF761. CSDL's abstract data type facility is a major design
rationalization and complexity management feature.
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A user-defined abstract data type is a set of values and a set of
permissible operations on those values. User defined abstract types
always have a definition which documents their externally visible behavior
and externally accessible operations. If the designer decides there are
no design issues involved in building instances of the type, no further
design is required. If the designer decides there are design issues, then
further design work is called for. The design of the type's representing
data structure and operation implementations are packaged in a unit called
a refiner, which contains the internal details that implement the external
view and operations.

1.4.3.1.2.1 Type Definitions

Abstract types are defined using abstract model definitions, which are
considered more understandable and easier for designers to construct than
axiomatic definitions CLISK79b]. An abstract type definition consists of
a model of the value set,(1) specifications of the allowable operations on
the value set, and optional INITial and INVARIANT specifications.

The MODEL presented in every type definition is a device with which to
express the specifications of the type's behavior. This conceptual model
has nothing to do with how the type is eventually implemented. Its
purpose is to give users of the type a picture of how the type behaves and
what type operations accomplish. However, there is nothing to prevent a
type's representing structure from being the same as its conceptual model.

CSDL has two kinds of type operations: ofuns which change the object's
state and may return a value, and vfuns which return a value but do not
change the object's state [ROBI77-T- If a design undergoes formal
verification, either in conjunction with its construction or after it is
complete, only vfuns and not value returning ofuns may be used in
expressions in the guards of IF, DO, WHEN and WHENEVER statements, because
the semantics of these statements require that guard expression evaluation
be side-effect free.

Type operation specifications were explained in Section 4.1.2. A type
definition contains only the type operation specifications, which are
presented in terms of the type's conceptual model. The type's refiner
contains operation descriptions.

INITial states can be specified for an abstract data type's conceptual
object space. An INIT assertion specifies a desired relationship among

(1) A model is a collection of typed objects, for example,
STACK (T:TYPE) IS
MODEL x: T ARRAY, tos:INTEGER

The MODEL objects' types indicate value sets for those objects; the
operations defined on those types are not exported to the type under
specification as permissible operations on that type.
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the values of these objects. The intended interpretation is that, when a
type instance comes into existence, its objects are guaranteed to satisfy
the assertion.

An INVARIANT is a property of a type's MODEL established when an instance
of the type is created. Each type operation must have the property that,
if an instance satisfies the invariant and the operation is invoked so
that its input constraint is satisfied, the instance will satisfy the
invariant when the operation terminates. However, abstract type operation
implementations may violate a type's invariant while they are in progress
because the invariant is a guarantee to the type's users in their scope,
not inside the type's scope.

CSDL also provides generic abstract types. A type definition may contain
an optional parameter list consisting of pairs of the form <id list>:<type
specification> or <id list>:TYPE. These parameters can be instantiated
when an instance of the type is declared; they particularize a generic
abstract type to an abstract type. The values of these parameters remain
constant for the type instance's lifetime. <id list>:<type specification>
specifies formal values. The <id>s in <id list> may appear anywhere that
a value may appear, for example, in an assertion. <type specification>
denotes a standard or user defined type. <id list>:TYPE specifies a list
of formal names of known <type specification>s. Formal TYPE parameters
may occur anywhere in the type definition that a type designator is
required, for example, in the conceptual object space declarations and in
operations' parameter lists or return clauses.

1.4.3.1.2.2 Type Refiners

A refiner is the package that contains the concrete decisions about how to
represent an instance of an abstract data type and implement its
operations. A refiner must contain:

o the data structure chosen to represent an instance of the type,

o one procedure for each operation defined on the type,

o a mapping function that defines how the data structure corresponds
to the model declared in the type definition.

A refiner is not a machine; it does not constitute a (potentially)
asynchronous, independent locus of control. Rather, a refiner can be
thought of as a set of templates of data structures and procedures.
Instances of these templates replace uses of objects of the type being
refined. Each declared object of the type may be thought of as being
replaced by a distinct copy of the representing data structure, and each
operation invocation may be thought of as being macro-replaced by an
invocation of the refiner-procedure of the same name.

The operations specified in a type definition are implemented by
procedures with the same names as these operations. This establishes the
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relationship between a definition's operations and the refiner's
.mplementing procedures.

The relation between a type definition's conceptual object space and the
refiner's representing structure is defined by a mapping function from the
objects of the lower-level type refiner onto the conceptual object space
of the data type to be represented. The mapping function is defined
within the refiner because that is the only place where the lower level
objects are visible.

The mapping function is used to uniformly substitute lower-level objects
for upper-level objects in the type's specifications. The resulting
assertions constitute specifications of initial states, data invariants,
and procedure specifications which must be satisfied by the representing
data structure and the procedures which implement the type operations in
order for the refinement to be a consistent representation of the data
abstraction.

1.4.3.2 Active Data

The idea and power of passivity of objects fits well with a single machine
"running" in isolation. When a machine is put in association with other
machines, and interacts with them, things become more complicated. One
machine, A, can affect or interact with another machine B only by somehow
changing the value of one of B's objects. From the point of view of
machine B, some of its objects have "spontaneously" changed state; thus
they are not passive. An active object is one that can exhibit a state
change that is not the result of an operation or procedure invoked upon it
within the machine that contains it. When machine A causes a spontaneous
state change in B, there is a flow of information from A to B. The
mechanism by which one CSDL machine can affect another involves a pair of
complementary active data objects and their connection.

Every active type is an abstract data type whose model is composed of
passive objects. It may be scalar or structured. Communication paths
among CSDL machines are formed by connecting instances of complementary
active types. Often the models for each of a pair of complementary types
are identical, but each has a different set of operations. Some
operations (for example, receive) absorb information into a machine's
space; others, (for example, send) emit it into a machine's environment.
The role of an active type (emitter or absorber) is determined by the
type's operations, not its model. Structured types may even play the role
of emitter and absorber. For example, each end of a full duplex channel
could be specified as the same active type whose model consists of two
data fields, with operations to emit through one field and absorb through
the other. The channel is constructed by connecting one object's
"emitter" to the other's "absorber," and vice versa.
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The fact that every active type is an abstract data type allows the
definition of various forms of blocking and non-blocking send and receive
primitives, and ack/nack and time-out protocols.

1.4.3.2.1 Complementarity

The idea of complementary types is based on an intuitive "plug-and-socket"
idea. Each member of a set of machines has a piece of communication
equipment, an object of an active type. When the pieces are plugged into
one another they form a plex over which the machines may interact with one
another. The various pieces may be structured, so there may be several
ways in which the components of a piece could be mated with the components
of other pieces. Thus there must be a specification of the one desired
way of mating the components.

We formalize these ideas in CSDL using the notion of active type MODEL
compatibility. Two objects are compatible if they are of the same type.
Two sets of objects are compatible if they can be put into a one-to-one
correspondence so that the corresponding pairs of objects are compatible.
Two sets are said to be complemented when a one-to-one correspondence
between them has been specified. In the simplest case, complementary
types may be built up by:

o defining an active type's MODEL as a set of passive objects,

o defining its complement's MODEL as a compatible set of objects, and

o complementing the two sets, that is, specifying the desired one-to-one
correspondence.

More generally, a non-empty subset of one active type's MODEL objects is
made compatible with a non-empty subset of another's MODEL objects, and
these two subsets are complemented. This allows an active type's MODEL to
contain objects that are available for specification purposes but do not
participate in connections with other active objects.

Complementary types should be designed in tandem; the design process will
produce a pair whose coupled effect is the communications protocol the
designer is aiming for. However, each of the complementary types will be
documented separately; each type's specification will contain a
COMPLEMENTS specification that expresses the complementary relationship
between the elements of that type's MODEL and the elements of its
complement's MODEL.

For example, an active type T could be modeled as having two components, x
and y, of type A, and one component, z, of type B. Another type U could
be modeled as having two components, p and r, of type A and one component,
s, of type B. T and U would have appropriate, different, operations.
Types T and U are compatible because there exist one-to-one
correspondences between them in which corresponding pairs are compatible.
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{x<-->p, y<-->r, z<-->s} and {x<-->r, y<-->p, z<-->s} are two such
correspondences. T and U are complements once one of these
correspondences is specified.

1.4.3.2.2 Connection

An isolated member of a complementary set of active objects is useless; in
fact, members behave passively in isolation. However, once they are
connected the resulting plex can exhibit active behavior; information can
flow from object to object, and hence from machine to machine. The
COMPLEMENTS specifications of the complementary types provide the
semantics of connection. Those semantics are that each component of one
object is associated with its complement In the connected object. The
nature of the association is that the components have the same value
throughout the period of the connection.

It is now clear how active behavior is obtained in a connected set of
complementary active objects -- the invocation of an operation that
changes a component of one object immediately changes the state of the
components paired to it in other objects; the machines containing these
other objects see spontaneous state change.

For the example in 4.2.2.1, an object of type T could be connected to an
object of type U in either of the configurations shown below.

type T type U type T type U

:A I ] p:A x:A ]---------> p:A

y:A -] r:A y:A --------- > r:A

z:B < ----------- s:B z:B < ----------- s:B

Complementarity of Types T and U

1.4.3.2.3 Inlets and Outlets

CSDL has two predefined active types. One, the outlet, allows a machine
to send information to its environment; the other, the inlet, allows a
machine to receive information from its environment [BOEB781. These types
are structured; their conceptual model is a record with two fields: a
window that holds information of some type, and a Boolean flag. Inlet and
outlet flags make transmission and communication detectable. Without
flags, detection by comparing old and new window values fails when
identical values are transmitted on the i-th and i+1-th transmission.
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Each type has two allowable operations which may be performed only by
procedures in a machine containing the object of the type. The inlet has
a "get" for reading information and a "came" for testing its flag. The
outlet has a "put" for writing information into it, and a "went" for
testing its flag. These operations are invoked only by procedures in the
machine containing the active object.

An inlet is an object from which information may be extracted by a get
operation. A datum arriving from outside the inlet's containing machine
will set its window to the arriving value and its flag so that
inlet.came=TRUE. The first get performed after the arrival of a datum
results in a new value being obtained; all gets after the first and before
the next data arrival return the same value as the first get. This first

get also resets the flag. Get, came, and data arrival are indivisible

actions; a flag change cannot overlap the invocation of an operation.

This rule constitutes the only guaranteed synchrony constraint.

An outlet is an object into which information may be deposited by an

invocation of a put operation. Some time after invoking "put," an

outlet's flag will spontaneously change so that outlet.went=TRUE if

inlet.get is applied to its connected inlet. Only the last value put

before a change to true will be communicated. Put, went and the flag

change are indivisible, so the flag change cannot overlap the invocation

of an operation; this constitutes the only guaranteed synchrony

constraint.

The communication model based on connected inlets and outlets
distinguishes between transmission and communication. Transmission
between an outlet and a matching inlet is instantaneous; transmission is
putting a value in an outlet. Putting sets the outlet's flag, the
matching inlet's flag, and puts the value into the outlet's and matching
inlet's windows. Communication happens when a value is got by a receiving
machine. Getting absorbs a value into a machine's local space, and resets
the flag on both the inlet from which the value is got and the matching
outlet. Getting does not change the value in either object's window.

1.4.4 Machines

Concurrent systems are designed as collections of concurrently active,
asynchronously communicating modules called machines in CSDL. These
machines are instances of machine types.

A machine is a collection of data objects and a sequential procedure that

manipulates those objects. The sequential procedure, Controller, may
invoke subprocedures. A machine may contain objects that are themselves
machines; in that case, the submachines operate concurrently with each

other and with their parent, and each manipulates a disjoint subset of the
parent machine's data objicts. Each machine accomplishes a task. When a
machine contains submachines, that task is accomplished by the parent
machine and the collection of submachines.

118



CSDL: CONCURRENT SYSTEM DEFINITION LANGUAGE

Like abstract data types, machine types have a definition and a
realization. A machine definition documents a machine type's externally
visible data objects and behavior. A machine realization gives the
internal details that implement that external view. The machine type is
more limited than data types since there are no explicit operations
defined on objects of type machine. Machine instances are created and
destroyed in controlled ways.

1.4.4.1 Machine Definitions

A machine definition consists of a list of the machine's public objects
and specifications of the machine's externally visible behavior.

Public objects are those (active and passive) machine objects which define
the external view of the machine. A machine's realization is guaranteed
to have these objects. A machine communicates with its environment
through its active public objects. Its passive public objects are visible
to the environment, but cannot be manipulated by it. Public objects are
used in specifications of the machine's externally visible behavior.

Machine specifications may specify initial values, invariant properties
and machine behavior.

An INITIAL assertion specifies allowable initial values of machine objects
for every machine instance of the type; an implementation must guarantee
that an instance will satisfy the assertion when it is created. An
INVARIANT assertion specifies a property of the machine's objects which is
satisfied when the instance is created and which is preserved at each
state transition the machine undergoes. Procedure boundaries inside a
machine are transparent with respect to a machine invariant; each
statement in every procedure preserves the invariant. The invariant may
be violated inside a type operation, but type operations are atomic from a
machine's point of view, so the invariant is still preserved from the
machine's point of view. BEHAVIOR assertions specify requirements and
constraints on the machine's function and performance. These are
atemporal and temporal assertions. Temporal assertions are explained in
section 4.3.3.

1.4.4.2 Machine Realizations

A machine realization opens the black box machine definition. It Is a
package containing the concrete decisions about how to implement a
machine's observable behavior. A realization must contain:

o the machine's public objects,

o the machine's controller, a distinguished procedure which is never
invoked but starts executing when the machine is created. One typical
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controller structure is a prologue block which initializes the machine
objects to some required state, followed by a 'loop for repeated
scanning of inlets. In this loop, data arrival Is responded to by
invoking other procedures and sending data out through selected
outlets. If this controller ever terminates, there can be no further
response to data sent to it from other machines; also passive objects
in the machine can no longer change state.

A realization may also contain:

o private data types and objects,

o machine and machine pool objects,

o specifications about internally visible behavior and performance, and
about the relations between public and internally visible objects,

o subprocedures.

1.4.4.3 Dynamism

CSDL is intended for designing systems with inherent concurrency (for
example, geographically distributed systems), systems in which concurrency
is needed to deliver adequate performance, or for which expressing the
design as . collection of concurrent modules leads to a simpler, more
understandable design.

There are two basic concurrent architectures: the static architecture in
which the system is created with a fixed number of modules which persist
throughout its lifetime, and the dynamic architecture in which modules are
created as needed to handle new tasks. CSDL supports them both.

In CSDL, the basic locus of control is the machine. The machine is a
container of objects and a control procedure in execution. A machine may
contain data objects of any type. A machine may also contain
machine-objects, that is, other machines in operation, and pools of
machine-objects from which operating machines may be created and
destroyed. These structures (the machine-object and the pool of
machine-objects) enable a single machine to contain several concurrently
operating local loci of control.

1.4.4.3.1 Machine Creation

A CSDL system is a machine; a concurrent system Is a machine which
contains other machines. A system's, that is, a top level machine's,
initial architecture comprises a collection of machines, each declared as
an object in the object space of the root machine, SYSTEM. Each of these
machines may contain machines, and so forth. When the system is
instantiated, all machines in SYSTEM's robject space are instantiated,
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communication links are forged, and they are set in operation. If these
machines contain machine declarations, the same scenario is repeated.
This is static machine creation. Machines created in this way cannot be
destroyed explicitly; they cease to exist if the machine containing their
declaration is destroyed.

When a machine containing pool declarations is instantiated, empty pools
are created. During the machine's lifetime, its procedures may explicitly
create and destroy pool elements. This is dynamic machine creation.
Explicitly created machines are linked to their containing context as
specified in an argument of the create operation. If the machine
containing the pool objects ceases to exist, its explicitly created child
machines cease to exist because the pools that hold them no longer exists.

Machines created statically or dynamically are wholly contained within
their creating (parent) machine.

1.4.4.3.2 The Need for Pools

Pool structures are variable size collections of objects of some single
machine type. (CSDL allows pools of machines only.) The collections are
indexed by pool-unique names.

There are two operations on pools: "create," which adds an object of the
machine type to the pool, and "destroy," which removes the object named by
its index from the pool. It is also possible to select, or refer to, a
particular element of the pool, and to ascertain the size of the pool,
that is the number of operating machines currently in the pool.

CSDL provides dynamic machine creation and destruction to meet the real
world requirement for dynamic process creation and destruction. CSDL puts
dynamically created machines in pools to meet its goals of facilitating
reasoning about designs and design verification. A pool's size attribute
permits the specification of resource constraints ("This pool contains no
more than 20 machines"), reasoning about pool size during design, and
verification that a description satisfies specified bounds on resources.
Of course, a design can contain pools whose bounds are not specified.

1.4.4.3.3 The Role of Public Objects

Every public object is part of a machine's externally visible state, but
public objects serve different roles in a machine design. Public objects
may, in addition to showing the external machine state:

- realize partitioning, when an object in the parent machine's object
space Is manipulated by a child machine in order to accomplish part
of the parent's specified task;
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- serve as communication ports, if they are active objects and if they
are linked to complementary objects in their environment.

Public objects which only show visible state are never linked with the
environment. Public objects which realize partitions are bound to objects
in their environment. Public objects which serve as communication ports
are connected to objects in their environment.

A machine's public objects are not intrinsically bindable only,
connectable only or unlinkable. The same public object may be bound in
one instance of a machine type, connected in a second, and unlinked in a
third. The disposition of each public object is determined at machine
creation by the initializing "linking specification" that appears in a
machine object declaration or as a parameter to a create operation.
Public objects that are not mentioned are unlinked at machine creation;
they may remain unlinked for the machine's lifetime or may later be
connected (but not bound) to complementary public objects in some newly
created machine.

1.4.4.3.4 Communication

Dynamic system restructuring is complete only when a newly created machine
is tied in to the rest of the system. This section discusses mechanisms
for accomplishing that linking and presents the information flow issues
involved.

Because CSDL is intended for designing operating system type applications,
it must be able to express a range of communication options from paired,
blocking send/reply through third party reply to non-blocking send and
receive. One language facility that gives CSDL the flexibility to express
many communication mechanisms is that it has two linking modes: binding
and connection.(1)

A machine influences its environment by means of public objects that are
linked to the environment by binding or connection. Unlinked public
objects cannot influence the environment. A machine whose public objects
are all unlinked is effectless.

(1) An equally important factor in accomodating a range of communication
options is that CSDL's communication objects and primitives do not support
a particular communication mechanism as, for example, Argus [LISK81]
supports send/reply and CSP [HOAR78] supports rendezvous. CSDL's
communication objects are inlets and outlets which can serve as
communication ports and from which more complex abstract active objects
can be built. CSDL's plug and socket communication model is neutral with
respect to the kinds of communication and synchronization mechanims the
application under design contains. The application's designer builds the
required commmunication protocols and synchronization menhanisms from
these simple, neutral facilities. 122
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1.4.4.3.4.1 Linking

Communication links may be forged only between newly created machines and
machines that already exist. There are two varities of linking:

1. Binding - in which a parent machine identifies one of its actual
objects with a child machine's public object, giving up access to that
object for the duration of the child's lifetime. Both active and
passive objects may be bound; binding occurs between objects of the
same type. Binding is similar to parameter passing y reference, with
the child's public object acting as the formal parameter and the
parent's object as the actual parameter. After binding, an object
which belonged to the parent belongs to its child. Only one object
exists in the system; control over it shifts from parent to child and
it is a semantic error for a parent to access or modify a bound object
during its child's lifetime. That actual object's value is unchanged.
Hence, the result of binding is that the child's public object is
initialized to be the value of the object to which it is bound.

There can be only one binding between a child's public object and a
parent's object for the created machine's entire lifetime. Bindings
are broken only when a machine is destroyed.

2. Connection - in which public objects in child machines are
"actualized" and the parent machine declares information flow paths
among them or between some of them and its own objects. Only active
objects are connected, and connection occurs between complementary
objects: an inlet is connected to an outlet and vice versa. Unlike
binding, two objects are needed to forge a connection.

All binding is done at machine creation. Connection takes place only in
the context of creation. Connection is done between a newly created
machine and an already existing sibling or between a newly created machine
and its parent. Hence, whenever a connection is made between two
machines, at least one of them is in the process of being created; it is
impossible to connect two machines if both of them already exist.

1.4.4.3.4.2 Information Flow When Forging Communication Links

Connecting a complementary set of active objects establishes information
flow paths among their containing machines. The semantics of connecting
complements is that their complementary parts effectively merge into one,
so that parts of like types will have the same values for the lifetime of
the connection. Since this identity is established at the moment the
connection is made, there will be a one-time flow of information (usually
garbage) into some of the connected machines as their objects undergo
apparently spontaneous state changes. To avoid injecting garbage values
into the state space of a machine in operation, we say that the active
object in the machine being created is "assigned" the value of the
complementary object in the machine being connected to it. Since every
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communication link is forged between a newly created machine and an
already existing one, this convention insures that values do not flow into
a machine already In operation. It is always possible to identify which
member of an information flow path belongs to a newly created machine.
This semantic for connection insures that we can reason about a machine's
behavior and properties in isolation.

A machine may have an INIT or INVARIANT assertion which must be satisfied
upon machine creation. When connection forging injects values into a
newly created machine, those values must satisfy the machine's INIT and/or
INVARIANT assertion.

The problem of garbage information does not arise in binding because
control over the same object is transferred from parent to child and this
transfer does not change the object's value. But information flow does
occur, since the child's public object and the parent's object become one.
The parent must guarantee that its object, when bound to a child's public
object, will satisfy the child's INIT and/or INVARIANT specification, if
any. In practice, it is safest, either to bind to a public object which
is not mentioned in an assertion, or bind several objects to a set of
public objects that participate in an INIT relation.

1.4.4.4 Temporal Specifications

Temporal specifications are needed as soon as the notion of several
machines operating concurrently is introduced. When two or more processes
progress concurrently and interact, we must be able to say things about
that progress and those interactions. Atemporal specifications of the
functional relation between a machine's inputs and outputs are not
sufficient to talk about computational progress in the face of
interactions. We need to specify phenomena like termination,
synchronization, and scheduling. Those phenomena can be specified only by
pointing at changes in data configurations in the time dimension, in other
words, by characterizing a system's computational history.

Temporal assertions may express ordering relations (A precedes B) with no
metric time attached, timing relations (A precedes B by two units of
time), metric properties of states and transitions (this transition takes
three units of time), and properties of data objects at particular points
in a system history (x=O after this transition).

Like the atemporal language, CSDL's temporal language also specifies
behavior in terms of relationships among values of data objects. The
essential difference between atemporal and temporal specifications is that
temporal specifications are concerned both with values and with the order
in which values and value changes arise in the system history. The
temporal language is based on a temporal logic; its semantics are defined
in terms of a set-theoretic model of computation and a model of time. The
model of computation is based on primitive notions of data value and data
object. The model of time is based on the real line.
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We are currently experimenting with a temporal specification language
based on [HALP83, HOSZ83]. This is documented fully in [FRAN83b, Chapters
10-11].

Every temporal proposition is an assertion about histories. Temporal
specifications assert facts about the whole system history by
characterizing sub-se-quences of that history and the order in which those
sub-se-quences occur. The basic sub-se-quences from which assertions are
composed are named by propositions from the atemporal language.

Some temporal propositions, called state propositions, characterize
sequences that begin with a particular state. That is, they characterize
a system as being in a certain state. Others, called action propositions,
characterize sequences that begin and end with states that stand in some
specified relation. They characterize a system transition. Temporal
specifications that specify temporal partial orderings on the state
sequences in a system history are built with state propositions, action
propositions, and composites formed using conventional logical
connectives. They specify properties of the entire system history by
specifying the history's structure, a partial order of the states in the
history. Given a particular present, we may specify both the future and
the past of a computation's history. A specification about the future is:
"If a message is sent by module A, it is eventually received by module B."
A specification about the past is: "If module B receives a message, it
was sent either by module A or by module C." We may also specify
properties of the entire history; one such is: "There is never more than
one token on the communications bus." Several temporal assertions may
specify different structures for the system history; a correct system
design must realize all the desired structures.

CSDL uses six temporal operators, <I>, <T>, <A>, [I], [T], and [A]. In
order to explain their semantics, we introduce the following sequence
notation: Let (R) and (S) be temporal propositions characterizing
sequences, and let s = sO, ..., sn be a sequence. Then, informally:

(R;S) is true of s if and only if there is at least one state si in s such
that R is true of the subsequence sO, ..., si and S is true of the
subsequence si, ...sn, O<in. The semicolon is the basic structure
operator; it allows the expression of sequences in terms of ordered
sub-se-quences. Left and right parentheses delimit sequences specified by
their structure.

<1> (S) (read: sometimes initially S) states that S is true of s if and
only if S is true of some initial subsequence sO, ..., si of s. We can
express <I> (S) as

<I> (S) = (S;TRUE)

where TRUE characterizes all non-empty sequences and is used to build
"don't care" sub-se-quences.
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<T> (S) (read: sometimes terminally 5) states that S is true of s if and
only if S is true of some terminal subsequence si, ..., sn of s. We can
express <T> (S) as

<T> (S) = (TRUE;S)

<A> (S) (read: sometimes somewhere S) states that S is true of s if and
only if S is true of some subsequence si, ..., sj of s. We can express
<A> (S) as

<A> (5) = (TRUE;S;TRUE)

[I] (S) (read: always initially S) states that S is true of s if and only
if S is true of all initial sub-se-quences sO, ..., si of s. We can
express [I] (S) as

[I] (S) = NOT <I> (NOT 5)

[T] (S) (read: always terminally 5) states that S is true of s if and
only if S is true of all terminal sub-se-quences si, ..., sn of s. We can
express [T] (S) as

[T] (S) = NOT <T> (NOT 5)

[A] (S) (read: always somewhere 5) states that S is true of s if and only
if S is true of all sub-se-quences si, ..., sj of s, O<i,Jcn. We can
express [A] (5) as

[A] (S) = NOT <A> (NOT 5)

H is analogous, in the temporal context, to the universal quantifier V.
[] is a universal temporal operator; it asserts that every terminal
subsequence, initial subsequence, or subsequence of the sequence under
discussion has some property. <> is analogous, in the temporal context,
to the existential quantifier 4. <> is an existential temporal operator
that asserts that there is at least one terminal subsequence, initial
subsequence, or subsequence of the sequence under discussion that has the
property specified.

1.4.5 Documentation Format

A CSDL design document is simply a collection of all the type definitions,
type refiners, machine definitions and machine refiners, arranged in any
reasonable way. We recommend the following "loose-leaf-notebook" style of
documentation format: machine definitions appear in a flat machine
dictionary; realizations appear separately from definitions. Type
definitions appear in a flat type dictionary; refiners appear separately
from definitions. By flat, we mean there is no nesting that scopes names.

One of the machines in the machine dictionary and the companion
realization dictionary must be 'he distinguished machine, SYSTEM.
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A machine realization may contain type definitions for types used only in
that machine. A type refiner might contain private type definitions but
not nested refiners.

All machine definitions and most type definitions are visible system-wide.
This means a type or machine may use any type or machine definition in the
type or machine dictionary. Some type definitions may be contained within
a type refiner or machine realization; these types are available only to
their containing structures.

The design document may contain several of each dictionary, and within
each dictionary every entry is a separate item from every other. There is
also no importance to the order in which items appears in the loose-leaf
notebook. So documentation standards in different organizations can be
accommodated by putting pieces of the system design together according to
each organization's documentation standards.

The loose-leaf style puts the right pieces of documentation in the right
hands. For example, a machine's implementor will use the machine's
definition to produce its realization but will use only the type
definitions of the types that machine contains. A machine's client, on
the other hand, will use only that machine's definition and the
definitions of its public objects. Obviously there must be tool support
for combining and recombining text fragments into proper configurations
for different users.

From the project management standpoint, the loose-leaf notebook is
produced a piece at a time, so there are clear, limited, and fairly
autonomous tasks to be managed. A tool which manages the design text can
also collect project management data about changes, number of accesses,
versions, and so forth.

1.5 EXAMPLE

This is an example of a machine type, Manager, which accepts requests from
its environment and returns responses. Figure 1-1 shows Manager's
definition. It has two public objects. Information enters Manager from
the environment through "in," an inlet of type Request. Information flows
from Manager to the environment through "out," an outlet of type Response.
We assume that Request and Response are defined.

Manager's public behavior is specified in terms of its visible objects.
The first clause of the behavior specification asserts that any terminal
subinterval of the system history that starts with the i-th arrives
transition at "in" contains the i-th leaves transition at "out," where i
may be any positive integer. In other words, the future of each request
arrival contains the corresponding reply transmission. The second clause
asserts that the i-th reply put to "out" is a proper response to the i-th
request gotten from "in," for all positive i. Here the LET facility is
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used to introduce temporary logical variables, rep and req, that are used
in specifying the desired properties.

Figure 1-2 shows an architecture that will implement Manager's behavior.
It consists of the two visible objects, in and out, a machine of type
Handler, three private objects and one procedure, Controller. Controller
accepts data from the environment through in and enqueues it in holding.
It also dispatches jobs to Handler when Handler signals that it is ready
to accept a new job. Manager's three internal objects are a queue, an
outlet for sending jobs to Handler and a Signal_in for accepting Handler's
signals.

The queue is an abstract data type; Figure 1-3 shows its definition. The
queue's type operation specifications are the usual kind of data
characterization specifications. The INIT specification says that a
object of type queue is empty at instantiation. The INVARIANT bounds the
queue's potential length.

Figure 1-4 shows the queue type's refiner. Although the refiner design is
not needed for designing Manager, we include it here to demonstrate the
use of mapping functions. Mapping functions allow mechanical
transformation of a type definition's specifications, which are stated in
terms of the type's model, into specifications stated in terms of the
type's implementing data structure. A type's implementation can be
verified against these transformed specifications. The refiner's INIT
specification, the first two clauses of the INVARIANT, and all the
procedure specification are direct translations of assertion that appear
in the type definition. The remaining six conjuncts of the data INVARIANT
are needed once the choice of implementing data structures is made. These
six clauses are invisible to users of the type; they concern only the
representing data structure.

Signal-in's type definition is shown in Figure 1-5. Its complements
specification defines an active type that is Signalin's complement (see
Section 1.4.3.2.1). Its INIT specification says that the initial value of
an object of type Signal in is FALSE. Its one operation, ready, returns
the value of the signal (TRUE or FALSE) and leaves the signal FALSE. This
type is designed in tandem with designing Manager's controller (Figure
1-7). In particular, ready is designed as a non-blocking operation
because it is to be used inside a blocking repetition construct.

At the level of designing Manager's realization, we are interested only in
Handler's definition, which is shown in Figure 1-6. Like Manager's
definition, Handler's consists of some public object declarations and a
behavior specification. The specification's first clause asserts a
liveness property of the Handler, that one reply Is eventually put out for
each request that arrives. The second clause is an assertion about the
past rather than the future. It says that, for any positive i, the
initial subinterval of the system history which ends with the i-th request
arrival contains a terminal subinterval that begins with the departure of
the i-th signal. in other words, the i-th request must have the i-th
signal in its past. The public objects are an inlet, an outlet, and a
Signal-out, which is Signal in's complement. At this level of refinement,
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we do not need to know even Signalout's specification. This is an
example of the extent of separation of concerns that CSDL allows.
Signal out will be specified in the context of designing Handler, and
implemented when convenient.

Figure 1-7 shcws Manager's realization. Manager concains four local
objects. The object server is an instance of a Handler machine. It
constitutes an autonomous control site running concurrently with Manager.
Server comes into existence when an instance of Manager does. The linking
specification following ":=" indicates how server's public objects are
linked to its environment. Linking is always done in the context of
machine creation. Server's outlet, done, is bound to Manager's outlet,
out. Binding outlet to outlet means that for server's lifetime it
controls one of its parent's objects; this allows server to return replies
directly to its parent's environment. Job and want are local active
objects through which an instance of Manager communicates with Handler.
Job is connected to server's inlet; want is connected to server's
Signalout. Holder is a Queue object that Manager uses to hold pending
Requests.

Manager's public specifications are identical to the ones in the machine
type definition. Its internal specification asserts that the requests
submitted to the handler are just those that had been previously received
from the environment.

Manager's controller is a (non-terminating) blocking repetition statement
which waits on two active objects. When information arrives at the inlet,
in, (that is, when in.came:TRUE), and the queue, holder, is not full, the
Controller gets the arriving data from in and enqueues it. When
want.ready=TRUE and the queue is not empty, the controller gets a job from
the queue and passes it to server, the Handler instance, by putting it
into the Request outlet, job, that is connected to server's Request inlet,
next. This controller has such a compact design because most of the
design work needed to attain this functionality was invested in designing
the data types inlet, outlet, Queue, and Signalin.
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Manager IS
PUBLIC in: Request INLET;

out: Reply OUTLET

BEHAVIOR
V i: Posint(i)

[T]( <i> arrives(in, in')
=> <T> <i> leaves(out, out') )

AND
V i: Posint(i) [

LET req, rep: Request(req) & <i> in.get' req
& Reply(rep) & <i> out.put(rep)

[ response(req, rep) ]

END [Manager}

Figure 1-1: Manager Machine Definition

Thingqueue(Thing:TYPE,n:INTEGER) IS
MODEL Thing ARRAY

LET tq:Thingqueue(n)
INVARIANT 0 < tq.dom AND tq.dom < n
INIT tq.dom = 0

OFUN empty
PRE TRUE
POST tq'.dom = 0

OFUN enqueue (t:Thing)
PRE tq.dom < n
POST tq'.hib = (tq.hib + 1) AND tq'.high t

OFUN dequeue RETURNS Thing
PRE tq.dom > 0
POST tq'.lob = (tq.lob +1) AND dequeue' = tq.low

VFUN is-full RETURNS BOOLEAN
PRE TRUE
POST isfull' = true IFF tq.dom = n

VFUN is-empty RETURNS BOOLEAN
PRE TRUE
POST isempty' = true IFF tq.dom = 0

END [Thingqueuel;

Figure 1-3: Queue Type Definition
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Figure -2 Manager Machine's Architecture
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Q-asbu'ter REFINES Thing-queue(Thing,n)

LET tq:Thing queue

TYPES
Circular-Buffer IS [circle: Thing ARRAY; front, rear:INTEGER)

OBJECTS
buffer: Circular-Buffer

MAPPING

buffer.rear REPRESENTS tq.lob;

(buffer.front-1) MOD (n+1) REPRESENTS tq.hib;

IF buffer.rear < bufter.front
THEN V i:INTEdER(i)

[IF butfer.rear < i AND i < buffer.tront -1
THEN bufter.circie(i) REPRESENTS

tq((i-buffer.rear) MOD (n+1) + tq.lob)];

IF buffer.rear > buffer.tront
THEN W i:INTEGER(i)

[IF[O < i AND i < buffer.front]
OR [buffer.rear < i AND i < n]

THEN buffer.circle (i) REPRESENTS
tq((i-buffer.rear) MOD (n+1) + tq.lob)];

(buffer.front-buffer.rear) MOD (n+1) REPRESENTS tq.dom

INVARIANT
0 < (buffer.front-buffer.rear) MOD n+1 &
(buffer.front-butfer.rear) MOD n+.1 > n &
buffer.circle.lob =0 & buffer.circle.hib n &
buffer.front > 0 & buffer.front < n &
buffer.rear > 0 & buffer.rear < n

INIT
(buffer.front-buffer.rear) MOD n+1 =0

[Procedures to implement type operations I

empty
PRE TRUE
POST buffer'.rear =buffer'.front

enqueue (t:Thing)
PRE (buffer.front-buffer.rear) MOD (n+1) < n
POST buffer'.front =(buffer.front + 1) MOD (n+0)

AND buffer'.circle (buffer'.front) =t
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dequeue RETURNS Thing
PRE (buffer.front-buffer.rear) MOD n+1 > 0
POST buffer'.rear = buffer.rear + 1 MOD n+1 &

deyieue' = buffer.circle(buffer.rear)

is full RETURNS BOOLEAN
FRE TRUE
POST is full' [(buffer.front-buffer.rear) MOD (n+1) n]

isempty RETURNS BOOLEAN
PRE TRUE
POST iseempty' = [(buffer.front-buffer.rear) MOD (n+1) 0]

Figure 1-4: Queue Type Refiner
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Signal-in IS
MODEL Boolean
LET si:Signalin; so:Signalout
COMPLEMENTS si,so
INIT si=FALSE

OFUN ready RETURNS Boolean
PRE TRUE
POST si':FALSE & ready = si

END fSignal in}

Figure 1-5: Signal-in Data Type Definition

Handler IS
PUBLIC next: Request INLET;

done: Reply OUTLET;
need:Signalout

BEHAVIOR
V i: Posint(i)

IT]( <i> arrives(next, next')
=> <T> <i> leaves(done, done') )

AND
V i: Posint(i)

[I]( <i> arrives(next, next')
=> <T> <i> signals(need, need') )

END {Handler}

Figure 1-6: Handler Machine Definition
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Manager
PUBLIC in: Request INLET;

out: Reply OUTLET

BEHAVIOR (externally visible}
V i: Posint(i)

[T( <i> arrives(in, in')
=> <T> <i> leaves(out, out') )

AND
V i: Posint(i) [

LET req, rep: Request(req) & <i> in.get' = req
& Reply(rep) & <i> out.put(rep)

[ response(req, rep) ]]

OBJECTS
server: Handler := ( done:=out; [binding OUTLET to OUTLETI

next TO job; [connecting INLET to OUTLET}
need TO want [connecting Signal-out to Signal in}

job: Request OUTLET;
want:Signal in;
holder:Request Queue

BEHAVIOR (internal}
V i: posint(i) [

(I]( <i> job.put :> <T> <i> arrives(in, in') )
AND
<i> in.get' = THE req: Request(req) & <i> job.put(req)

I

CONTROLLER
WHENEVER -holder.is full & in.came -> holder.enqueue(in.get)

o want.ready & -holder.is empty -> job.put(holder.dequeue)
END

END [Manager realizationi

Figure 1-7: Manager Machine Realization
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1.6 DISCUSSION

The software engineering project's goal is software engineering
technology: formal models, design techniques, technical methods and
languages. Because formal models are an engineering prerequisite for
languages and technical methods, they have received much attention and are
the most mature. Because language makes methodology and technical methods
concrete, CSDL's language components are also relatively mature. In the
context of CSDL we have done almost no work on design analysis techniques
and tools, but the existence of models and formal languages means that the
framework is prepared. Formality also means that the foundations for
support tools are in place.

So far, the weakest precondition predicate transformer technique has been
used rig "crsly by very few designers. Practitionerz have been extremely
reluctant to give up their familiar informal design styles for a formal
design method that requires a large learning investment in basics like
predicate calculus, in the CSDL notation and in the method itself. As
long as we do not offer a tool that generates weakest preconditions from
postconditions and algorithmic statements, we do not expect algorithms to
be rigorously constructed in CSDL. However, the exercise of writing a
specification informally using the constructive technique and examining an
algorithm to convince oneself that it meets the specification does
increase confidence in the design produced.

In reality, CSDL, with its "formal purity," is an investment in the
future. When the need for probably or constructively correct software
becomes so great that a large dollar investment in tools is warranted,
CSDL will be available as a language whose constructs have proof rules and
semantics defined in terms of a formal model. In the short term, parts of
CSDL can be used along with less formal notations, for example, English
language specification and designs produced in CSDL notation. This
produces better designs than those created with a less complete notation
and paves the way for designers to move into an entirely formal system.
There is little specification support for properties like performance and
reliability. Formalizations of these properties that can be related to
the computational model are required in order to develop the linguistic
mechanisms.
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activities in concurrent systems. An
object-oriented approach Is comprised of objects

This paper describes an object-oriented design accessed or updated by users through transactions,

model for structuring reliable distributed systems. a sequence of primitive operations on a set of

A system Is viewea as a collection of objects that objects. I transaction is viewed as & unit of

are accessed and modified by transactions. error recovery and synchronization in the system.

Recovery techniques are incorporated to ma The key to designing reliable systms is the
tranctions ate c th are prencorte o c net atoMICIty Of transactions and a sufficient level oftransactions ctu se in the presene of cmponent redundancy in the system to support continuedcrashes anid concurrent operations. Atomicity € operations in nse of loss of objects (i.e. system
transactions is based on constructing recoverable oponno s by

objects using multiple versions and commit components).

protocols. These concepts are extended to nested Lampoon and Sturgts (LAXPT6], and Gray (GRAY79)
transactions. The operations on distributed introduced independently the concept of Coesit

objects are peformed as remote procedure calls. Protoces to implement atoec actions on

This requires Implementation of remote procedure distributed objects n the Presenoce of system

calls in a reliable fashion. The facilities of dase. The nested transaction facilty is used

reliable nested transactions and remote procedure rase. o distributed cocurrent operations.

calls are used to synthesize distributed objects Construroi nested ianstcons rntroduces the

that are highly relable. concept of 'conditional cami taent' .  The

commitment of a nested transaction is dependent on

1 .0 k&LngMQLM the oeemitmet of the parent transactions. Most
diOUSStoGS On this topic have benefited from the

The architectural features of distributed systems, concept of *sphere of control,' first introduced by

uh eas physical isolation between system Davies (DAVI73]. A process execution is viewed asa 'sahere o control'eithinnwhichthe proces
components which tends to reduce correlation among a *sphe of contraLN within which the Process

component failures, and redundancy of resources to changes the states of the objects and controls the

support continued operations in the presence of Ioemitment of these chances. Once committed, the

component losses, offer great potential for changes made within a *sphere of control' can never

designing reliable systems. This potential hu be revoked. The problem related to nested

remained largely unexploited, however, because of transactions, and the designs to address these
the lack Of a formal disciplin t integrate the problems have been discussed by Shrivastava

known existing recovery techniques Into distributed E3HRZ82b], Reed EREEDT8] and Mass EMOSS81].

systems designs. in this paper we present a design In the proposed model, operations on remote objects
model for distributed systems which facilitates a
sysematic ano d wistr edst tureds integratio of kno are performed as remote procedure calls, requiringsystematic and well-struotured intedato i ou te reliable implementation. Discussions on reliable
systems c remote procedure call models have appeared in

recent literature, most notable the discussion by

In constructing reliable systems, the maintenance Spector ESPEC82], Nelson [N.LS81], Shrivastava

of recoverable consistent states of objects is an ESHRI82a] and Lampson (LANP81b).

important problem for system recovery. Another Creating small protected domains that interact
problem, which i functionally orthogonal throug wel-deflned inctrfaces plas an important
recovery, Is concurrency control in distributed role in system redovery by conlnang error

oyslems. The solutions t thes two desin propagation. Object-oriented designs facilitate a
Problems interact closely, systematic construction of such mall protected

domains for error recovery. Recently, the
Obje0t-oriented designs8 offer an attractive object-orlented designs have been used by Liskov
approach to constructing reliabLe systems by [LISl2b] Shr.vastava (SHRI 81 1. Svobodova
confining errors In the system, by defining ($SVO81], Reed (EED79] and several others to
consistent system state to support rollback and structure distributed systems for high reliability.
restart, and by limiting propagation of rollback The scheme proposed by Reed Was the first to use

This work Was supported by RADC Contract No. ultiple-version facilities to implement atomaic
F30602-82-C-0154 actions. This scheme has been used to implement a
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reliable storage facilities for objects Is te reliability funcaion. Another problm witn

SWALLOW CSVOaI I design. LiMkow CLzUb] ham physcal storag4 is the bon-atomi~cty of write

proposed object-oriented linguistic caseas operatiou On pages, for ezaple, a crash aay occur

based on the concepts of guar Aas and ations to IA the disk sysem during writing a now value on a

contrct relable d tributed systes. PO. leaviag the PW corrupted because the ol4

value ba been destroyed and the new value tas not
been Written cmpetely.

The problems related to rollback of preemoes Is
concurrent systems have been addressed by several Thfe Ali facility, onastructed from the

researchers CRU3SSOJ CK.Ur9]. One gsAiAgni physical disk storage, provides atomic Write

roblea .s the doSino effect arising free operations on pages while enhnan g he

uns~tructured Interactions among actvitiesan Aai~lability of data by replication.
causing a cascade of rollback among concurent
activities. In object-oriented systems, the A n n lofts its control state data

acUTvitIS are trnsactIon-based so that too on crashes. A restart operation causes a process

;.nteractlons among activities are well-structured to eeue friee the beg.nning. A .tLah1L* ..^?U

and 1 cPlIfe. Again, "sphere of centra." helps facilIty, on the other hand, supports saving

limit the rollback activity. preoo5 states an the stable storage and restarting
& process frm a prevousaly-saved process state.

Manaing redundancy In the systeM in the term Of Svung proesas states is Galled uUAAIka=
replication of objects or creation Of baeckup
3b .ects Is Important ar supporting eontinued Zn or node the system eonsisa of a ellection o
operations in the event of loss of reaeuees. The objects, easc of which is of a vell-defined .t.

:aor problem in redundancy angement is maaged by am AkAaU MGaa . Zn addition to

aIntaining consistency among replicated objects, suppering operations asoci"ted with the type
and having current state inforemation with backup deiation, the ejeet ammg " for a type also

nodules to support recoaftSursa ao The souos creates objeets of that type, or Oestr-ys sefe

to this problem keep a majority or a sorrivable met existing objects at that type. £sytm id
of the replicated copies in a cen stnt state.o. eject esued a M,,C faultates the

intre b otiOo aa type defiations in the system.
Zn Section 2 we present the abstract design model ?ui aPpFm i. bsed oa too Pri-aples followed
for - rliable distributed systems. Ueneo 3 ia the enat of Hda ECUO 53. The type manag
reviews briefly various recovery technques object in eu am"' erreaponda to the TPz-TT
applicable to distributed systems. 3ec object i n aArs.
integrates these techn ques into the des in moda .
Ao each level of abstraction, appropriate recovery The sen level of abetra eiea provides

techniques are besoribed. a .. |.h based on stable storag
.8tale P omoe am .. n ,,( )

faeLAte. Stable objects are those that survive

2.0 RV0- g~1fv5Vnl 4 ysem arachee With a hig Proa blity and for
whi the primitive operation (I.e. the

A desigAn model, inspired by Lampon a lattiee mod" opeations supported by the type definition) are
L.ARP81al for constructing reliable distributed ateele. Soeue objects are protected objects whi

systems, is shen in Figure 1. The objective of an be aeoessed only by authorized users. In our

reliable distributed system designs is to odel, P =ese are considered as objects

synthesize secure and stable distributed objects appor d by a stable P neesar facility.
%aat survive system erasee and suppor i14
function availability of services. Suc objects gsing the IOD faelity, every -"JeCt in the System
are constructed using ureliable reseo8res Mc am in gives a globsuy um4 so me. This name Is

Pnysical storage (disks), physical proce , and never reued in the entire We-Ume of the system.
the cNSunciaAtion sedum. Free this un4ue Identifier, the type of the object

es I inferMed. The 932 aLse identifies the node

:n this section we describe the desiga model swn whre the object was created. Objects In the
n Tgew.e 1 in a ibotteo-uV fssmao. This sod" systa my migte frem one no4e to another. The

is one possible approech o 4e-.ng reiaae 5Th faclity defne tae logieal ame speae in the

!s1rbUe4d Systems. It Is particularly sulted for system. OperscAi on an object are invoked by
an object-Oriented systems in which into raMtins specifyin the o of the object and the operation

among objects are tranameLoobased. We Identify Gme. Beause the umique Identifier allos

the functions of each level In the gSap abeen in determ rnglie of the type of that oeJct, the

Figure 1. in Section 4 we desoribe the aPl m LAea operatiem inveatie en am objeet Is directed to

of various recovery mec i to afteve theN the appropriate object manager for that type.
functions at eh level at the dea modoel. meom the opersute a the remote and loeal

objects w iinemd in am Identical fasme, we
The - rers to efn-vlatile disk find the remoto procedure call Paradigm a
storage with na • on-zero probability of iformation cnveeient absietle.
10ss; for eample, a page on a disk may be
corrupted by a head-crash or other malfunction. The CID generation Is based on the stable storage
Suca failures can be characterized by reliability and the stable processor facilities. The UID

:easures such as the mean- Ane-tn,,allure or a generation facility is based on a local clock
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Nested 'emote
Transactions Procedure

Atomic
Transactions

C on trl ec rmechanism Commnunication

oecweas

I Ul0s

Access £ Sb Mechanisms
Control rcsr

Mechanism

Rryaical Commtnication
StoageProcessor Medium

A 0g~ Medd for PANWi. Oiebhmd Sy ia

proces& or a Sequenc counter that Used the stable
storawi go awyiLve syetft Gr-skes 4M to eSnw AWML4p winnin ae smplie uing the
that the Sees UZ to Set revmstemi ema restoAt oe 40l~. eadil bed aboe amd som cooiwrronC
a arne after a w. The VID for as objoet onro G ee ebamif= A Lreaoesf AO'aLi be atomic
Ismut m eU type of theoebject aid the nomi ahr is the Wreses e o smeert Operations am systen
it was n eted. A sebise ear Psmmiag UZD in a cratei. Atcaleity Ge eaetwiosat trangntLons
reliable faakLOa 12 44eSrIbed in ESCI3 1. r~~uiies sutable nocb8a"Ma far concurreacy

control. There are banicaLly two distinct
T!he abstraction of recaversal objects provides approaches to concurrency control: cun
1 CAAIMS to restoring tao state or an object Protocls CLUIA76] and tine- stMP based Schte2e

afravngmi a [smmt io aitig fuall1. Rewwwa~b1. objects support schom., -.
a anang. to the Object State. The csocpt of 40110 atOfLoityP of tranoswatiom in tile presence
coitment. rorm s aw a soteretie go ot" berwe Of &Yatm oraftes. Transactions in our model ame
coiumfs. ConmUet of a 40asW to an objet tiOted 48 0bJects Of proces tYpe. AS in the case
&&plies aaMCMUnUM 6 t.M~ aga& Made to the Of &W Other object01 is the aYstQM, & transaction is
object asoe tne last aeMat OperatiOn. aSeOLSd a UZD.

We urs the anosaPt at Asaia..au to Zsu.S'uau bLe costeructing higher
InpL mot antabLe reees"MMU objes. As 1LS or Of Shetlft* by cmpeoig a Not ot
"MiatabLe object isoft that is Wr h ainge tiS lmtLAs Oft em transaction. Nested
It is createod, i.e., ever chaow to an object tiSUetNIILO W USOa usefuL (or Introduvcing
creates a new object. In our @odeI every changs to WarLlIM within an atomic action. The
an object crastes a amw AWL of that object; OMtnMt Of computations by each Of the nested
this Version IS UniqUely ieAUtiabLe by "sing the transactions 1.s dependent Oft the acitmons or trio'aM se tao object got the 'oral.. ingber. Thgo W~est trgaOtIO9. CGOWMPoorrec ontral meabangas
principles have been discussed in detail in aft Ie"Wiroi to sycbronise mated transactions atCUIUI0 and (SYOS11lI. the AM Or dIffereog parent transactions.
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W.. e p~ee u' e f N8s based oa te the interfaces. Confining errors is strongly

atomic transaction facility to ensure tae ataP.Ar, dependent on toe stringency ot the acceptance
of operaties in the presee ot system res and tests. IA distributed systesS, Interfaces
other aomrrest Urinmi4un The remtoi provide well-detood and controlled meeas tor
preoodure call ounaam ues U eIbie iA&a&M te propagatioa ot ezeption conOtiaons
facilty with b* probbility lfr Mesmer' between modules. Z the Interface function
mssose delivery. The diOa"Smueii in CWJ and execution encounters error condc1ions, an

[LZSK2a] support building reliab e e error conditien to returned to the caller
procedure Calls using less sophisticated faculties through the Interface.
such as a dataro. Thes eand-tO-e arrmeats

CSALT81] point out the vusesfA duplaton e (of Diagnostic Checks: Explicit rests are
functions at Wifrent evels. conduced an system components or wnicn
Sa.ere eomnitnPA is achieved w encrypting epeced outputs for &Lven test InpuZs are
ismSOs and sto.i ngo-ecrlpted smmds 'a knon. The components to be tested and the
protected butters. Components conducting tests should be

independent. As pointed out in (ANDE79],
dianostio Checks are rarely Use4 a a priary

3.0 A ksm at As== .w zab error etactics eabanim; but used rather as
a supplement to ether detection mechanims.

Conceptully, there ae three "Met4L
strateies Incorporated is every reliable system (S) latervaL Tier/TIae-OI IechanAsm: In
design. Than we wrar detection, domw omtrajied systems, the Interval timer
assesment, and error recovery. The following technique tor error detection is based on the
parts of this section describe the met eomos tiae-out Gonpt. before starting an
techniques for error detection and reeovery. aetivity, the progrm starts an interval timer

et to certain deLay. Zr the activity is
completed befr the timer unts down to

3.1 awe, the eouter is restarted; otherwise, on
counting to zwe, the Interval timer

The reliability or a design depemins o the interrupts the P me Indicating some
saringony of the tes iqmus for deteeting poossbo error eoAitom. Zn distributed
erreneeo states In the system that MW lead to sytems, ti NODO teh1n4unee are also use to
system ftalurse. detect possible error conditions. A process

Inveling a remote operation waits for a
Same general t eohqmUe tor error detectioa spesfted time-out period to reeivo the
(ANDr91 are described below. response. o response is reeived within

this period, as exception condition is raised
(a) Replication Cheeks: Zna sma s*me, an and approprisaz forward error recovery is

activity Is replicated &ad the resalts are Initiated.
Checked tor asistemy. An Inmossisteey
Indicates a possible error eoaditloa. fri-rs
can be Masked by mjority vot asa ?riple 3.2 L. Up
Modular Redundant systems.

(b) Reversal Cheeks: This is used to check what Depending on the way a conastent system scate Is
the Input to the system should have been. The regenerated, error recovery techniques are divided
calculated Input and the actual Input are into two broad cateories: ak&WmL error recovery
Compared tor consistency, and £n3aC error recovery. In backwartd error

recovery, a prior consistent state in the ezecution
(a) Coding Checks: This is the most popular fore history is restored. Forward error recovery

o error detection. Redundant Information in techniques, which are application-dependent, use
the form ot checsm or parity is associated th, present error state to arrive ac some
Witn objects to detect erroneous states. consistent state.

", Acceptance Tests/Consstency Checks: At The backward error recovery requires facilicles for
certain well-de ed points in the execution, establishing recovery points which, after Crashes.
cests are applied to the oejects to ensure support resanstructing or restoring the state at
that the state at that point conforms to te moat recent recovery poaint prior to the crash.
Certain specifications. An ineonsisten ies Same of the tea tM use used fer backward recovery
imply an errmm s ate. Cemlatemy aeem we deseribed briefly "Lows
can als be applied to m sutiated data
struOtures that are reest aL eted en recovery.

(a) Checkpoating: Zn this technicue, the
(e) Interface Tests: The= tests ensure that the Complete state o the process to e

interactions among system components meet checkpointed Is saved on A stable storae. I
certain acceptance criteria. Tests are a process-oriented deSipSD, a checiCPo~Ut also

applied to the parameters and the results of saves on the stable storage the current s te
interface functions to limit propagation o of all the objects bound to that prooess. Is

errors trm one component to anot er through effect a Checkpoint are aes batWJ .aLem
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On a stable storage of the complete execution acceptance test, forms a recovery block.
eulvircesiont of the process that existed at the First the primary block is executed and the
time of checkpointlag. acceptance test Is applied. If the acceptance

suceds, the recovery block termjnates
Cb) Careful Replacment: Mei technique avoids successfully; otherwise, the next alternate

updting objects *in places. Updates are made block is executed Wita the State at the System
to a OcurrentO copy# and a *ahadow* copy restored back to the one that existed before
maintains the version before the updates. On the application of the previous block.
comitment, the OshadowO copy is replaced by
the acurreate copy. g.) Object Replication: This technique ma.ifltainS

multiple copies of an object at c:ftferent
(c) Multiple Versions: In this technique, updates sites to increase its availability. A". least

to objects are recorded In a new version that a survivable subset Is always kept I.n the mst
becomes current only on the commitment of tge up-to-date State. This set is Chosen such
updates. In case the updates are to be undo that the probability of all mmbers Of this

(e. aborted), the ONe versIon, Which is set being In the crashed state 1s very low.
uncoMMI tte6d. is3 discarded. 54ACb gets are caI4.ed the A -AL=

(HINGS2]. The eamacea Of this principle is
(a) Lop/Audit Troll: In this technique, actions reflected In ame of the replication

pertormew on an object are recorded in a log manaement schanes that have appeared tn tbe
or audit trail. The purpose of the logs is to iterature. The simplest is the majority
Support eI ther 2=nd of the logged action for update rule (flGI93 proposed basically to
state rollback Or ZMgM the logged action to, address the concurrency control problem. A
ensure pernence of results produced by some generalization of this soh-* is the
comitted transaction. Logs that contain the weighted-voting schemes proposed by Gifford
redo actions are called the SACmaI logs: EGZIM91 and Skeen ESUMla, where every
lop that record the undo actions are called replies of as object Is assigned some number
the .bUG5= logs. The bachead logo either of votes. The rules for accssing or updating
record the Iiverse operatios or the values of the replicated object are based on acquiring
the object "efore the applicationato the safficient votes (ie. forming a quorum) In
logged action. During a recovery Xrocess the system. ALl members in the quorum are
backward lag is Used by MUneSun it bha lds updated atomically. By aae-nng the rules for
for undoing actions I& a last- in, first-out feeming quorta fr operatios, diffrerent
fai on. The faoli mcJ~&ba rule is reliabiLity amd pert Grassee levels a" be
always followeid to ensme reovery: i) force attained.
the undo leg on the stabLe storage before
updating an object in-plane, Wi force the (b) Self-Idestifying Object: In this technique
reo log on the stable storage before maltable descriptors are attached to the
ceemttLng as update. objects to faciltate reconstruction of

directories by salvation programs. Salvation
e)Differential Files: In this technique, a~l programs are used only in cases of extreme

updates to an object are recorded on a failures Whore net enough information Is left
differential file [51TL763. The updates fro IZ a coiAstenOt State to support autoatic
the differential file arc merged Periodically rollback and restart. Such programs need
into tae main copy of the object and suich operator Intervention.
updates art then deleted from the differential
file. The diffecrential file technique Generally, every reliable system design
provides an inexpensive means of maintaining incorporates beth forward and backward error
sul tPLe versions of a large Ohio"t. recovery techniques. The most commn technique for

ia are a form of differential forward error recovery Is uA212LUM .andLta
f116s or forward logs containing redo actions [0000751. Exception conditions are the anticipated
that record the am values of the objects and error conditions in the system. An nanai.na
have %114 property of idempotency. The Aadj= Is a progrm block that is invoiced when a
property of idemPetencY 10pli1" that repeated specified exception condition arises during
executions (so of Which may be Incomplete) run-time. The purpose of the exception handlers is
Of this sequence of actions would always bring to bring the system to a consis3tent state.
the updated object to the soestate. Generally the exception handlers are application

specific. Forward error recovery requires a
(f) Priary/Backup Mode of Operation: If an error complete understanding of the application f or which

is detected during the inVocatios Of m00o the system is being designed. In this paper we do
service supported by taO primary object, a net consider these techniques in any mere details.
backup Object provides a oestinuten of these
services starting with am Previous
consistent state. The backup object a" net ~* Z& ama ZmR~bJhzbain L
be Identical to the primary Object. The us 21AABd
technique of Mwz bAcksM CNU741 is an
exmple of Integrating theme concepts Into
software architectures. A primary block, In this section we describe the reliability
along with one or aore alternate blocks and an techniques that are suitable at each level of
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abetraction i t a dealse model mew s o Fiu 1 . are forced onto the stable storage to asks taem
The diseansAOS ia vided lato fw ajor pats: oveeaus under no" ca ses.
object aaafif esa. trasmas oa nagement, remote
proed*ure calls, and the mmet of diAstributed Reliability teaniqu us most suAab0. tor
objects. We focs GA the probleams related to onastructing recoverable objects include multiple
recovery rather than Protection an security versLos, dife entia tiles. intention .ist.s,
issues. audit tras/logs, and seol-ientty.ng ooects.

GeneraLy, a comAbination Ot severai of ".ese
teeniques IA Used In 4onstructlng recoveraole

5.1 ,'d * objecta at a node.

Lampoon presented the techniques tr constructing u is les exensive maiainig nult.;ue versions
stable statS trm unreliabe disc Store as a d.iferential file rather than as COPies of -n
taclity (LANI&]. The pimar7 lU of Usn 3abme Original. object. A differential tile ,n wnicn te

s to Sake the OPer&tLom Of Writing disc "gas sequeAe of -ane S iempotent can be Used as an
at ic. intention list to ensure the peruanence O resut

On the ceeniWest Of A transaction. Backward logs

Lpsona sC&Me is based on the technique of are used for "estoring objects by undoing the
AA-M6L. M 2e1pWMnMnP. The atem.oc operation far actieo recorded in the log. Whenever a hew

writing pages ca the -n volatile storags is Called uacommitted state Of an object is to be forced

3ta lelft. The talbLelut operatioa firte WrAeg in-place ea the stable store" fram the volatile

the p g on as unused disc page rather tha writing memory, It Is essn aL that (In Order to keep the

It over the orIgm' a; thus, an failure during Object recoverable) the Ia GI log be orced on

ee cutios of the Stablel operation leaen te the st bLe staorae before forcing the uncommtted

original page Intact. Periodically the two paes object is-pLace on the stable storage.

are compared, and the Ad page is replaced by the
new one. The pages ae also checmd for an 3aLf-Ldentifying objects and conAstency checan

corrWutIon of data by applying suitable Parity or pla as MImportant role during restart a ter a crash
caeckeiun tests. The corrupted page is replaced by is recoatructing objects, Object headers and
the data Or the other pe it that pae is tal directories during the restart after a cras. For

unspolld. This z2zJJGLu of Pags also empLe, with eltupLe verniou, difterential tiles

increases the avalaUiAt and meaa1te-.tfalur and logo, additieal infor omatiosuch as the object

for the Page, provided the pages are star"d on VID, state of the versions (camitted, Uncomait".ed,
different storage ou such that their faile a eomit penIng, ete.), painters to other versions.

Independent. 1o6 and differential tiles Is incorporated for
crasm recovery. After reconstructing tile data

I. HhU1. S structure$ an crash recovery, the consistency
checks are OIportant In checking the validity and
correctness of the reconstructed data structures.

An Object aage, speota prllave oera tions
h e jets fcits fye, as well as o bher fuctons At this point we describe a schame and Its

such an tr e controtaon oa rescoverale objects, associated data structures for maintaining multiple
concwren c a ,contol and ycces conareol. Objects versions in the systen to construct recoverable
byta whic Oecover and synchronisation are vided objects. Logically, every version In this sCzheSe
by th.e oject m agr contains a descriptor which contains the Uf oft the
(L 3(82b1. object, version nmber, OiD of the transactIon

Generation at UIDs Is an important part of reliable currently holding this version, a tie-taMP

ObJ~t M=90*0t.A cashreast&V 3CQM0for Indicating its creation ties, and a status of tneec anagement. A cash resist t snrie ior version. The status fiead can be in any one o the
i' rati ng ID. in the system * descri bed in (allowing states: nnli~ , .-- ~d - :-,

:SCHA83). In this scheme, every nGe In a subset f, and .

Of nodes, which tors a survivable set, must

0ssess a stable storage facility. A global The tine-samp tield at the versions is usef :or
sequence counter is replicated over this subset discarding th versions created by a ransacfon

an d Since its last checkpoint. The commit-pending
so3etimes globa synrequiarean. mOn "seao nodes state is used curing execution oa the two-phase
is requaie. On restret, node not havingm a table commit protocol LLIP76], CGRAr79] with the current
smorae obtain te sequence nueber r one of the user transaction. The cait protocol is initiated
mmes ofthis survivable ot of' nodes, by the user transaction by sending a

psesage to the object managers at

Concptullycontrucing all the objects It has updated. On receiving aun
t.Aaw.0h~ba Objets -nou esicoetu l inatreding a macsage, the object managers change the status
recoverale obje s in ou deini e model is bsdoOn field of the current versions to commt-pending,
the ertape version tecnAques (an8w, (31o31]. and return a positive acknowledgement. A version
£very chan4e to an obvect creates a new version at in the ComMit-pending state cannot be Unilaterally
hat ooject; such versions5 are finalized upon discarded by its abject sanager.

Committing the enciosing transaction. On

t transaction aborts, te tenttiave versions c seated In the scheme proposed h ere, we use dirferential
y that transaction are discarded. The versions riles to maintain multiple versions. The versions
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at an object ae maintained in a etreeni ru with sene addtioml properties; therefore,
as records oA cbanes to the exsting cemmittd trumasstion type is a sub-type of pro "e type.
copy of that object. Applying these angs to the
object has the property or Jdapten ; herore, A taes: abjeCv o n eat can be in one at m ve
the dirteren*a tiles also serve as intention sttes: Znaottve, Rn , Sapended, Cmleted,
lists. For every transaction, on such r±e isr or Aborted. The operations for Process oJect3s
created as shown In Figure 2. The tile control include: Create, Destroy, Start, Restart, S tU,
block (FCS) plays an ipor tant role in this scsme.: Suspend, and Resun.
The FO2 for a difTerential Tile bas two parts F n
Current Transaction Descriptor and hyical Sta an object-oriet viewpont, ew versions o
Map. Current Transacton Descriptor costal"ns a proeas object are created during execution of
identifier and the status of the transacton that the proe e , I.e., a am version o the process
has recorded new unoamitted veraosi or the object object Is created whenever its program counter
In the dittreatL& tile. col 3tr*rp fap changep This vie is 0- steat wt t e one tor
points to the records a the stable stor multiple versias at dao objects. There is,
containina t updats er ute -m verset . ,/f howevre, a dfter.eee between these two types A
rewriting this TO using the atanie 3tablefut objects in handling rollback recovery: with data
oeraton he entre M an b c aom Oec It is usually possible to save all
atmic acteo. Ts use of YO for a u vers s o an abj et bere theme versions are
is siailar to the afe described Is CLOU"7 aaitted so that rolbmek to a previous version is
EPAT91. To record an actia on the tie,' te relatively staple; with process objects, it is too
changes are written on new pages, the W2 is esPe Sve and i epraaUcLA to save the process
modified and re-written using the ftab~eput states of all execution steps. Checicpointlnag can
operation. At this paint, the change h" been be vi ned as the selective saving ot versions ot
sUccesSfAtly recorded. Procm&e objects and is use to establish recovery

Paints or proess objects.

4-3 Zg_ TheL T tollowing operations tr proe" objects are
- ~ ~ ~used to support ebakpeiating and rollback:

In this section, we discuss the -s at rolLty
'tecniques to Implement r4Uble processes and a tstaihtemveryFont - stve h te current
transactions. AS 00%e" In Seatlen 3, M aecma am pofsm state at the process object in
considered as abj ts. oransaato are atomic stable storage.
processes; transaetioa ae objects ar X type a isoarloeeoeryftont - discards the checkpoints

af a pftren object.

Powm.. ewert

Oftsvet OsMto. in soiee
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o Rollback - Continues the execution of a process execution; a process, however, invoking an
from a checkpoint. idempotent transaction may elect to force a

checkpoint during the transaction caIt protocol
Note that with the above scheme for checkpointing, for efficiency reasons. For example, if the
only the state Of the process object is saved; the transaction requires extensive computation compared
states of objects modified by that process are not to chekpointing the Invocing process, and if the
saved in the checkpoint. This approach OW create possibility of a failure is SaignAficant, it may be
problems for error recovery since not all state desirable to have a checkpoint as described above.
changes of the process are recorded. It is That decision is left to the proctss that Invokes
necessary, therefore, to follow some discipline in the transaction.
using Tcheckpoints and atomic transactions. Tae following example Illustrates toe flexibil~ty

First, we req tre that a non-transactiOn process provided by the second solution. Consider the
(e.g., a u347 process) must invoke a . Q in folwng scenario In which a process receives some
order to =odify an object or a set of objects. The item from a buffer, then processes the ;.ten.
ctanges to an object are recorded as new versions Get~tem is the transaction that is invoked by the
ot the object. New versions of the object are process to receive an item from the buffer.
ccmmitted to become permanent at the end of a Commitment of this transaction leaves the buffer In
successful completion of the comAit protocol among a now state In which the removed item is no longer
the Invoced transaction, the invoking process, and present and the previous state can never be
the object managers of the modified objects. restored. If the process Invoking this transaction
Un itted versions are d3icarded by explicit checkpoint& itself on the commitment of the
abort comands from the transaction process or by transaction, the received item is a part of the
timeout on Inactivity. checkpointed state of the process. Any subsequent

rollback will restart p-ocessing of this saved
If a transaction is nonidespotent, i.e., multiple item, and there will not be any need to re-invoe
executions of the transaction produce different the GetIt4M transaction. On the other hand, if the
results, a problem nay arise in error recovery Process does not checkpoint on comiitting the
since rollback of the process may cause a comitted GetItem transaction, am a aubsequent rollback the
transaction to be re-executed. One solution to old item would be lost; the process would iavoke
this problem is to always force the invoking the GetItem transaction once again; and processing
Process to perform a checkpoint betr e the would be performed on a new item. In certain
transaction completes comitting the aodifle* applications such as process control systems, the
objects. Check poiting Is Mrt of the oeAmit seeond soeneri. mW be a valid mode of error
protocol; If the protocol determines to abort, the recovery.
checcpoint is discarded. With this mandatory
checkpcint, rollback recovery of a process can A question on oetkpointing still exists: Because
avoid undesirable repetition af transaction the eckpoint of a process doa not include the
execution; however, this may cause too frequent current states of the objects that are modified by
checkPointing of the Invoking process. The second the process, how does it guarantee correct rollback
solution, therefore, is to make checkpoint of the recovery? This question can be answered by
;rnvoiing process an option that is to be specified considering the ways in which objects are affected
at the time of Invoking a transaction. This by a transaction: firit, a transaction may
checkpoint apparently Is not required for directly modify an object by Invoking an operation
idempotent transactions to guarantee correct on the object; second, it may invoke another

transmction that *d&fes the ob ject.

We first consider the object modified by the
transactions by invoking an operation on the

,iJaste X; ......... Cettee Valon X1

Uoate X Createe IVew X2 (a) osject I Vroitn I VersLon 2
Coit.teu Unfmeititol Uncomitted
N 1 TI

r seCto 12 Object I I t m I ereio 2 eriou 3 Ve ss I(b) CenLLau feamatteG UNemM Ne WWeuMtme Unee ttele

t" T1 11 T1 T1

UpoteX - .... C etseAreoX 3mw T

•hsJet 1 Itsm I lels 2 Teoumi 3 VeeslmLna2(d) CO e COmltted CasiltuL CoMgitte Cegtt
earns71 TI TI

Obees I VYsice t Ve~hue a e2 .Ve ..sl ] ea I

End TIn u e N
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The technique that we use here requires recoverable
object. One reuarement tr correctly implefentiog objects as described In Section 4.2, I.e., each
roLnbact is tht the obmctna fomnaer for update to an object creates a now version of the
transactio s mout maintsan for each trafction b object. Each version carries the information to
ths of UIDe or the objects that are affected by Indicats whether it 1s a o=tted, uncommitted, or
he trasaction 5o th•t if the e~e €~o e, commt-pendLng version. In order to support nested

the transaction will be rolled back to its latest transactions, additional Information is needed for
checkpoint. This requires that all changes to each version to Indicate oan which transaction the
ob:ects made by the transaction after the version Is dependent. This information is attacned
cnec;olnt be discarded. The list of UIDe of the to a version when It Is created by a transaction.
obiect3 that are affected by the transaction

OrV:'.es a means f or notifying these objects to At the end of a transaction, the transaction either
discard the unwanted versions. This list is also commits or aborts the changes to the object. :f it
used a. the end of the transaction to conduct the aborts, only the uAcommtted versions that are
:c=n-t ;rotocol. dependent on this transaction are discarded. If it

comits, all versions of the object that are
0 oers dependent an this transaction are changed to becoame

trct or ipl each; chekoinan t2acthPs est be dependent @5 the parent transaction of the current
recorded withs eachs ch*e it add ech TeZeU or transaction. Zn this cae, if the current
objects. This is necessary because Checkpoints do ransction is at the top lewel, I.e., if it is
not record all versions of a proess object and Invoked by a Mon-trasacton process, these
thus there is not a one-to-one mapping between versions are comitted to be permanent.
Process checkpoints and versions of objects
affected by the process. These techniques allow us Figure 4 Shove an ezaple Of nested transactions.
to rollback a process correctly with modifications Tranction TI updates the object X to create
to objects in the first way. Venoas I and 2. both versions are uncomitted and

contain the information that they are dependent on
The correctness of rolling back a process with the 1. A logical vim of this result is shown in
second way of modifications to objects Is Figure 5(a). T1 then Invokes transaction T2, which
guaranteed by the principles followed in oertting creeses Versios 3 aM of I (Figurte 5(b)). When
a nested transaction. The updates made by a nested 72 is completed successfully, all versions that are
transaction are made permanent only If Its pmet dependent on T2 are abened to be dependent on TI,
transaction is commtted. Any rollback within a th e garest treaLmaes of 12 (Tigure 5(o)). Since
transaction may cause abortion of me committed T1 ia a top-level transaction, I.e., It is invoked
nested transactins. In case a tranction Is by a na-transaetion proe s; when it is completed,
aborted, the changes &ade by the tranAction are all version that are dependent an TY are omitted
discarded (transaction are atomic). The objeets to become permanent (Figure 5(d)). Version 4 of I
are brougt back to the state before the is nOW the current committed copy of object X;
transaction was started. Failure of the Invoking other versions can be discarded at this point.
;rocess poses no problems to these objects.

In order to Implement the above scheme for nested
transactions, we can use differential files to

s3.zpler. Because transactions are atomic, changes maintain multiple versions as described in Section
to objects are either not done or made permanent 4.2 am Figure 2. In the eumple in Figure 4, for
from the invoking process point of vmW; and a nested transaction, a new rC and descriptor
because the transactions are also idepetent, the block is created as shown in Figure 3. When a
rollbacx recovery Is always correct, so matter nested transactioA oapletes, the transaction IID
where the invoking process is rolled beck to. field in the descriptor of the version that is

being Committed is replaced by the UID of its
As described in the previous parent transaction, and the status field is changed

3ext-asa 'ond o a decribed i n the ito the uncommitted state. The status field of a
seCto3, at the end of a successul transaction the version changes to committed only when the
ctmecs tnet were changed by tha e transaction are transaction oemtting It is the outermost level
nostted to become permaent; however, foer transaction. Zn Figure 3, transaction T2 is nested
nested t-ansaction, (a ra.nsaction ivokdl by within transaction TI, and TI created versions X1
another transaction th at copletes successflly, e nd X2 for object X. Transaction T2 appends now
comd.pent of the changes to objects will be versions X3 and I4 to the differential file, and
dependent on td he success of the ptent transetion, these changes are visible only in the FCB that is
ob a nested transaction is aorted, the cares to being used for transaction 72. On the commitment
orJees mado by the transaction il be disPren of 72, the old ,C3 is replaced by the now one, and
reaardless ofw the sucea of f it parent the user transaction field contains Ti. When T1
transaction; hoaever, te failure f ant comits the Status field In the descriptor Is
transaction may not always cause tit parent changed tO comitted, and the updates from the
transaction to abort. In this secti on, we will differential file are applied to the object. if
descr.be a technique for Implementing nested an cras occurs durin this upatin, te
transactions. This technique requires only minor Pr cr duri thi ping,
modifications to the technique for implementing Procedur4 can be restarted from beginning.
sirgle level transactions.
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A .4 Remnte Procedure Calls characteristics. At the link level, appropriate

retransmission protocols are used to deal with
The problems related to reliable remote procedure transient errors.
calls have been discussed In [LAWIIb] and
[SHR82aJ. One problem associated with the
impleamentation or remote procedure calls is their a.s n4strtbuted ri.et. T m 6
execution semantics. In case of a retranmitted
request message, should repeated executions be The reliability techniques at this level deal with
permitted? To address this problem, Nelson aintaining redundancy In the system. The
N-.581 ] has classified the semantics of remote redundancy In the system Is maintained in the form

procedure c1.11, as follows: of object replication, primary/backup copies, or
survivable sets of objects. The techniques

o At most once' - In this semantic, at most one suitable for managing redundancy at this level are
execu.t.or of te procedure takes place. It is based on the principles of voting e,'OH?9] 'GZ:.'
Poss'03t thnat no Invocation occurs. In this together with some commit protocol : ,AHP76
case the call returns with some error condition. [GRAT791. At the distributed application leve,

the reliability techniques deal with the syntbesUs
o "At least once* - This semantic means a of reliable objects by redundancy management and

successful return from the call guarantees at the construction of recoverable transactions.
!east one execution of the procedure. Atomic transactions play a key role at this level.

At the application level, these fundamental
.n cost of the applications 'at most once' as mochaAms are integrated into same higher level
preferred. One problem In the implementation of techniques, such as a recovery block, for system
"at most once' is detecting duplicate requests at structuring. Forward error recovery based on
the server end. if the client process crashes exception handling Is an important part of
after sending the call request and retranmits the reliability techniques at this level.
request after the restart, the server should be
able to detect the duplicate request. For this The problems aseociated with the Management of
purpose the UID facilty Is used to assign a unique redundancy in the system have been discussed in
name to the request. Section 3. The nested transaction faciity

provides a convenient and powerf ul abstraction to
if a requester crashes after the server bs started Perfors atomic operations on a Set of distributed
the procedure execution, the procedure Invocation objects. Ieplication masagement techniques based
is termed an 'orphan'. After a restart from the on quorWa or majority conseMuS aor used within
crash, the requester process will retranmit the nested trsametioa structures.
remote procedure call request. At this point we
nave two options in the design. The first option The concept of recovery blocks can be used
Is to retransmit the request with the same UVD as conveniently at this level to define a primary
was used for the Initial cal request. Zr the transaction along with a set of backup transactions
original request was lost, this retrans itted and swe acceptance test. This can be done easily
request will invoke the remote procedure. If the in our model because transactions are atomic.
server received the original request and started Integrating the backward recovery techniques, such
procedure execution that was later rendered as a recovery block, with forward error using
'orphan' due to the requester cras, the server exception hand Lag ean create very effective
would detect the duplicate request, continue the recovery meohanisms in a design. Such an
'orphan' execution which is no mere an orphan, and Integration of thes twO oACepts hs been
return the results of the 'orpban' to the restarted described in [ M.LT]. For forward error recovery,
requester. This scheme requires that every exception conditions can be associated with
requester process must have access to a stable primitive operations on objects. Exception
storage facility to store the request along with handlers can be introduced within a transaction;
ts US: so that on a restart the retranrT'ttd this dces not affect the atoaicity of a

reCues: has the same UnD. Because of this transaction. If a transaction is a part of a
.Ixita:±on we reject this scheme and propose the recovery block, an acceptance test Is applied on
second scneme In Which every remote procedure call its completion, but before its coemitment. The
1s an atomic action which coemalts only after transection is coemitted only if this test is
executing a commit protocol with the requester. passed or else the transaction is aborted and an
Tnus, the results produced by the 'orphans' are alternate transaction is tried.
discarded because tho comitment protocal fals.
This scheme eliminsates the need for a stable
storage at every node at the expense of decreased LAA£AMLM
performance due to ocemitment protocols.

Ve have presented an objeet-oriented design model
The reliability of the datagrom facility can be that supports structuring of distributed systems
enhanced by introducing appropriate reliability for high reliability and error recovery. In this
techniques Into the network layer and the link model, we have Identified the error recovery
layer supporting this facility. At the network problems at the different levels of functional
ievel, the network topology Is an Important design abstraction and have shown how various error
issue. A network topolog with higher connectivity recovery tec4niques are integrated into this design
would generally exhibit better reliability model. For example, techniques based on multiple
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. eample, a linguistic esocmnim is needed toIntroduce object type definitions Into the system
This paper presents the principles folomd In mW to define processes acd transactions.

designing Zeus, an object-oriented distributed
operating system designed to study integration of A ditributed operating ystem tar highly
recovery awecaniee into the designs at distributed reliable aplicatilns must provide 1) recovery
coman and control syStm. The primry goal ot s nL is that we trianlspent to the application
ths Zeus design is to define reliable object developers and 2) ng echanLmas that mke the
management functions for distributed comand and physical distribution of objects and functions
control systams and to evaluate the performnc aN transhpaent t. the application pr#3gri er. The
the correctness afthLb recovery mechanism for second feature is Important to sake -evelopmect. of
thes functions. Therefore, no ispleeumtion of distributed Softvn no mre ditfitult than the
Lbis design currently exists. The uM Provided development of conventional softmnre systems. The
functions support definition of object type ., Zeus desiL las e a significant contribution In
creation of objects, and updating ot distributed this dLrection. Other systems have integrated
objefts using atomic tranmctions. e ae thane two -acpt In their design, hover they
currently evaluating te performance typically limit object management to the file
characteristics of this design using simuLation stopag level. To date, Argue (LIShS21 is the only
models wa proving the correctness of the recovery other system smich provides a set at general
mechanisms using formaL methods based an Gypsy safmiiss for reliable management of distributed
language (A 31, events and state transition objects of any 'typ. Ze provides thee
based models (TRZP63b], and simulation models. To aehanim and addresses SeverlL other issues much
achieve these goals we have ref ined the Zeus design as object relocation, authentication and object
to a significantly detailed level. To date we have protection, not Included in the Argus design.
explored this design only from ths viempoint of Another novel feature in Zeu is the Integration of
thes goals. Several research problems necesr tbe cmventiona databae magement functions Into
to Implement this system remain unexplored. ?or the operating system object management functions.

This is important because mst of the todayspopular operating systems do not provide efticient
~ mechanisms for daths aplcations CSTONU 11.Tht work en supporte y cote Air Developmt Even with respect to its recovery model, the ZeusCentr Cotract Mo. F602-42-.C-015s design differs significantly from other iumm

R am of authors are given in alpbatical order designs.
wo, by formtion R h Asocates "M Muc of ths recent research in reliable system

art uy a Prm-aeseOrer Asoc aomyts w, design is actually explorstion Into systM
Ien redudrac.aae re strutuing techniques. These are more significantfor distributed system than conventional

a00 This author is currently employed with IN centrelised systems because distributed systes are
Santa Teresa Lab -, San JOSS, CA. This work ws Intrinsically mare complex. A structured approach
performed by the author while employed with can reduce design complexity by factoring the
Honeywell Inc. designs Into layers that create different levels of

functional abstraction; the design of a layer can
then be carried out somehat independently of Me
design of other layers. the layers in tLe system
ca be viemied as creating hrLsontal partitions in
the system de ign.

Another structuring cocpt, which is dual as
well as orthogunal to layering. is
object-orientation "il createo vertical
partitions in the system. The Interactions betweer

150 partitIonm occur tugh el-defined interfaces;



thus, sach partition 1n the system represents an CTRIP$3aI. In this model the construction of
independent domAin wmero the internal structure of reliable distributed ojects is based on an atomic

a domain can not be directly accessed by other transaccion facility and a remote procedure call
daLins. A vertical partition essentially embodies mechanism. This approacn Ls summarized in Figure
the concept of objects in. th system. The whole 1.
systm L viemOLd & Collection Aof Objects. All
state transformations in one partition by other
partitions ars performed throug the Interfaces DISMTIIUTD OBJECT .ANAQ T FUWCTZoN3

defined by the partition. The advantage of such an (Partitioned and Replicated Objects)
approa is that the design of the internal
structure of any given partition Is Independent of -------------------------

the designs of other partitions. These are the
fundamental principles of data abstraction. Fron REM= PROCDUR9 CALL. ,CUx.s4
the viewpoint of reLiabLe system design, su h tn
approacn Ls very attractive because It supports --------------------------

confinement of errors within an eaJect boundary.
This also implies that the recovery secranas or ATOMNIC TRAUSACTION F&ACIITy
a given partition can be designed to suit its
reliability requirements. -

The concept of object-oriented design has boe LOCAL 08J1 MANACVIMT FUITIOMS
Used in some r9cent distributed system designs such (Concurrency Cntrol, Recovery, Access Control,
as Cronus [SUI831, SWALLOW IFSTOM! ], Argus Object Storage H leament)

:LIMa2). and in the approach presented in
[SR181 ]. Argun provides ooject-oriented ----------

linguistic mechanisms for constructing reliable
distributed systems, and SWdLiLOW provides reliable K U =% OWlICT
oiOect anapent. These systems do nt support (Ho t Resource Hnagemaent, Communication. Scheduling,
so of the other operating system functions such Interrupt handling)

as access control, naming. sharing, and resource
sanagement. Sea of the functions supported by---------------------------------
Zeus., suc as naming, authntication, and
Interproceass comunilcation, eziat tt other ARDVARE
operating systems such as Pilot ]REDESI and
Crapevine Si1R182], developed for network-based
applications. Nether of these two system are
however, general purpose distributed operating A Model for Reliable Distributed systems
systems. Figure 1

The Loveast layer in this figure represents the
The Cronus operating system design .=- kernel functions that ezecute at every Most node of

significantly influenced the design of Zeus, the distributed System. Above the kernel Layer are
Largely because both these systems are Intended for the local object management functions such as
highly reliable applications such as command and storage sanagement, acces control.
control systems. Zeus provides users with reli ale syl-ftronsation, and object recovery. This Layer
object aageent, which is not present in te represents the functions that are associated Witn
:urrent lesign of the Cronus system. Like Cronus, every aeject manager in Whe system; thne functions
Zeus us the cnaracter of a general prpose at this level deal only with the centralized object
operating sy.-:e mainly because the nature of the anamt. The nest layer provides facility of
command and control applications includes a wide atomic transactions; thus, a sequence of operations
range of processing characteristics. This is in -an be perfoe on a set of objects in an atomic
snarV contrast to the requirements for banking or faafon. The raete procedure call echanism
airline reservation systems Were the application facilitates operations on objects that are not
environment is well-defined. Zeus provides local. We have adopted the remote procedure call
.apbilities for defining and creating Objects and 0 MIM O U It proVidtS 4 UIfOr way of
transactions required by the application systems. accessing remote as well as local objects. Thus
It als" provides mechanisms that support sanagesent location of the obJect is trensparet to the users
of such ObJect in a reliaole fashion. Zeus can be during acess or update operations. It is
'Asd for constructing any high reliability impotant to hske e semntics ot remote and Local
application system. proedure calls identical in the presence of host

crashe and coiuication Link failuree. In our
design we have adopted the at moat once' execution

This paper presents the basic object-oriented sentcs for remote procedure calls; thus, in the
buildng blaock mecnanIsms provided by the Zeu presence of duplicate emmm or on SerVo node
distributed operating system. The concept of crash-restart, effectively only oe ezecution at
oject magers is the basis for system the remote procedure will occur. The caoiination

structuring. An object anag r provides the of the remote procedure ca.Li meawftni with the
encapselation fr a given type o objects; all atomic tranaction facility is used for maaging
objects of that type are access or updlatd via objects that are either partitioned or replicated.
that Object mar . The object-oriented recovery gase on theme sechanisma one can suitably create
model underlying the Zeo design La described in type defAitions for replicated or partitioned
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Objects Such that one can access Or Update the functions of system-vide Software units such as
objctsIn hn am annr s udatng entalied operating Systems and datages. system are

obj3ects.i h ae* ' n S.i5 incorporated into a collection of type Managers
objects.which implemet the basic elements of the mo",l of

The abject management me Used in the Zeoo distributed comptationsi. This 15 a radically new
design is based an the concepts developed ini th view of Operating systems.
Hydra [COMM] design. In an object-Oafieftd
approach, the system is comprised of a set at Object TYPe Managers are the. priary building
aejects, AMd each abject i of a well-.defined type. blocks for the permanent elements of the syste.
A Type If*isge object for a liven type manages all The TYPe-TYPe Mfiager Lia an object In the sYstem
objects of that type. All operations on permanent that manages "types"m in the system. It Is :..
and shared objects in the system are executed via means by which new types are intrOduced into tne
their type mneagers. There are some obvious System. The concept of the Type-Type manager ,s
differences between the Protection models used in essentially the same as that of the rzypE-Lpv
the Hydra and Zeus designs. The protection Object In the Hydra design 1CCHE754]p

mechanism In the ZeUS design IS based on acess,
control lists while the Hydra model is capability The Objects in the system are accessed in a
eaed Althouh both thrse models are equivalent uniform fashion regardless of their locations.* All

in terms of their f'unctionality, they differ with operatons Ont permet objects are perforsed
respect to their operational environmsent. The within a transaction. A transaction is bascially
prim reason for using the access control list an atomic action that is defined as a sequence of
model in our design i to be able to chng whe Operations on local or remote objects. A
access rights dynamically. Although it i not very transaction ensures &tonicity Of distributed
efficient to change access rights dynamically in a operations. It is Possible to introduce
capability bmsed system, dynamic changing at access concurrency within a transaction by creating nested
rights is important in a comnd control system transactions.
whtere some of Mhe nodes night be taken over by
mostile forces. 2.2 Object uasing

2.0 PRINeCIPLM Or DISTRIIUTED OBJECr-CRITM The most basic requirement at the lowest level
OE31GV IN ZEU3 Of the system architecture is to identify and rtfer

to objects uabiguously. This requires that etac:
2. 1 Structure of Object-Oriented Systems Object must be associated with Som system-wide

An abject-oriented system consists of a UniqUe identifier (11W). In the design 2ocei
col~ection of Type Managers and the objects created adopted for Zeus, a unique identifier is assccia:ed
by them. AS described above, the TYPe Managers with every object in theA system; frog -..i1s
create vertical partitions in the system. For a identifier the Otypeg of the object can :4
giv.en type in the system, a Type Manager Would Inferred. To aid object location the Zeuo deSI~n
exist at all those nodes which may be required to uses the concept of an *extended" VID. An extended
Store Objects of that type. A Type Mangr at a ULD adds a "host hint*m field to a 13W that
node manages all objects of that type at that node. identities the host from which the object was mast
The ultiple instances of Type Managers for a type recently accessed. Based on the otypeo field in
function cooperatively to provide whe abstraction the VID, a reference to an abject is directed to
of a single TYPe Manager for that type in the the appropriate Type Manager at the node given -.y
system. Each Type Manager deines an address space the "host hintO field of the 1110.
in which all the Objects of that type reside. A
TUPe Manager is logically viewed as a single 2.3 Functions of the Type Managers
process that Performs all the state transformations The functional characteristics implemented b~y
on the objects in its address space in response to the Type Managers are the original basis for
execution requests by some other objects of whe defining abstract data types. Extending abstract
same or different type. data type concepts to include a formal basis for

whe integration of recovery, Synchronisation, and
At a phyicalL nod*, several different Type access control mechanisms generates a number of

managers amy reside, aah managing objects of its addition.L functions far whe Type honagets:
type at that node. The abstract machine to support
such an abject-oriented system ca be constructed I- Each TYPe Manager is directly respons.,ole
from almost any hardwre/softwmre system for the Mapping of the occurences of the
architecture. The system architecture of the objects they define to physical storage.
processors to support such a system must have: (1) 2. Each TYPO Manager implements access
a mechanism for switching the Processor betwe control Policies far the occurrences of
7tYPe Maagers, (LL) a mechanism for partitinin i ts type.
Secondary memory resources among Type Managers, and
(iii) a mechanisin for exchanging messages betwern 3. tach TYPe Manager supports concurrent
TYPe Managers. execution Of its procedUres and/cr

fumctions.
It~~~~~~ ~ ~ ~ ~ ~ =0b otfo h rcdm mdla *gea Type Manger nures the consistency

ItP cang~ be a se e r e preo ce t moe of of the Objects it Stares unde concurrent
steie gestat thre unio conctr o ao and distributed use.
recoerm-iectate onifm. e orm conrolh aundlor 5. c 20t YPe Manger implemets the necessary
arecvy mecnisms. Reore Prinedn alo leveh LO oSOf redundancy to ensure the Lsvel
and re of Ten Maagr. p Thoed tadlon i of fault tolerance given in its

the et f Tpe hnagrs. The radtioalSpecification.
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This obviously Integrates many functions that have A Type Manager's controller has several

boeen conventionally associated With dataase responsibilities related to Protecting its oojects
systems into the object management fctions of from unauthorized access. Upon receiving an
tis operating system. Invocation request, the controller oust obtain and

stor the requesting process, identification. This
inforation is made available to tne operation via

2.4 tture of ?7P9 h*Sm 5 a callable procedure so that ne Type ftnger's
A Type Manager LI externialy viewed as a controller may chec the access List of Moe object.

collection of functions and Procedures which can be rn addition, the controller appends *he
invoked on the objects of its type by specifying Identification of a process which is m"LIng an
the Identifier of the object along wth the outgoing invocation request to some othner .ype
operation name. This causes an Invocation request Manager.
message to be sent to the Type Manager regardless

of its pnysical location in the system. When an incoming invocation request '3
Internally, these operations are ezecuted by the received, the controller attempts to Locate : e
Type manager using one or more server processes; object Whose UID is given in the request. .Irst.
such server processes may be dynamically created or the controller Looks for thle object in its La n
destroyed by a Type anager. The operations an local pool of Objects. It Found, the progru wn±.n
remote and local objects are Invoked by the clients lcl per1orf te operton on the oject Ls

In the sam fashion as procedure call. such Parameterized eito thie object's local address and
invocations on remte objects are performed by then IS Scheduled " the server proces. If the
isplemnting remote procedure cails (me-"I] object is not found locally, the controller
'SHIR83] with "at mast once ezecution' semantics. detemines if a f orwrding addrean" has been left
A Type Manager consists of: for that object. This might occur if the object

has been relocated to some Other host. :r the
p-, ta structure r the oijecU of tt Ojet is not found Locally, the controller sends a

type; reply message Indicating that the object s .ot
- Procedures/functions defining the type; ound and ncludes te formdng addes if t any.

- Concurrency protocols;

- Recovery mechanisms; In response t an update request, the Tympme
- A database to manage the objects in its anager creates a new version of the object. ,.I

loAn; version is cOmittd only en the transaction t.at
- A controller process that schedules/ezecutes creatd it comAits; the uncomittad versions .:.,

the requests, discarded It toe transaction aborts.

A type Manager is responsible for the permanent Each Type Mmnae maintains a database vft.i.-
storage of the object Instances of iU type. Each Ct' s the nW=Sfs information pertaining to -e
Type wanager interfaces directly with set of Objects in its address space. This data*.s"
permanent storage devices. The Type Manager records the Identifiers of the objects of that type
generates the sapping from the UZD for an object of currently present at that node, their pdysica.L
its type to the physical storage on some permanent addresse and t comaitent sts of thei mst
storae devices. It also realizes object current versions. A Type Manager is also
instantiation in the executable volatile storage responsile for aoting an uncommitted rsion i.
from the permanent. storage. There ts no repnil rabtng n Wftt VsonI
(ysre-the pmle system. The object nagement it detects no activity by the transaction that
system aie syse place of a ble sysmem. created this version. Every time a new version of

an object is created by a trmnsaction by invoking

an update operation, the Type manager ensures :-.act

A Type Manager consis i of a controller this new version is written onto the stable storage

process whos purpose is o schedule server before sending an foledgeeet tar the

processes to seve client requests. The server operation. A sceme for maintaining such multiple

process Is given the same hD as that of the client versions using differential filse is described in

Process. Thus, a client process is conceptually (111131.
viewed as migrating into the address space of tMe
Type Manager. This view of the migrating client Type Managers are reepon le (or ensuring

proc L t 'e r4 vlv / o en'or~n8 that each of their defilned opertions 15 tr~mc.
process is. useful from te viewpoint of enforcing hatfThe operaion mt et oepAete succest.L.y or

access rights associated with the client process.

On the completion of the requested service, th else abort, leaving the object completely

server process is deallocated. The controller unwodif Led. This is not difficult to achieve if

process accepts the incoming or outgoing Invocation only local object.s are being modified in the

request messageS, Performs security checks, a operation. However, if the operation involves

interfaces idinveing operation. on other Typo Mmnagers, then
wte ly, th te kerpnel Poep a. the controller uses the transaction facility to

o a lectavely, th conrolle r poces ploys t y e pmaet ensue the atonicLty of the update. If the Type
O A 10cah operolci systm n o th e M Mne ; manager is structured so that operations may be
te scheduling policies Ca Una be talor" to the ezecuted ceourrently, the controller ensures that
specific requiremet. of the Type fmnaws. The onet ar net being mitied b7 two opertions
controller proem; manages the sever proemmes s wmenoty be m l by we otim "bile beton

Performing LIe operations and provides thn with m oifiLed by ameth,. Eae typ, in general, Uh
set of procedures that perform reseurce management, its am set of constraints an the allowed order of
cOmmication, protection and other services that esecution of Ls operations on a given object.
are normally provided by an operating system. Them constraints are supplied when the Type

Manager is created.
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2.5 oisrLuted Types 
3. 1 Structure of the Zeus gernl

The reason for introducing the concept of The kernel Consists of a t45M dispatcher and a

dtributed types in the system is to make numer of interrupt handlers. Th task dispatcner

transparent the distributed nmtue of an object schedules the different Type Managers at its nost

that is logically viewed As a sinee object. The node and handles their requests tor resources. It

components of an object may be distributed by also hondle the restart of the system am

rqlication or partitioning. The transpeefcy of Initiation of the Type Mamnaers. The resurces

the replicated or partitioned nature of an object managed by thi kernel include volatile an

is a convenient abstraction which makes updating non-volatile storage, the processor and the

and accessing of distributed and centrSlize4 oemnication handler. The kernel Interface

objects identical. consists primarily of three parts: Lnvocac.1:n
requests to other Type managers, requests .:r

A distributed type is an abstract data type unique numbers, and requests for resources.

whose concrete representation is distributed. For Storage management in tne kernel is Xin!sal.

eample, an abstract type called reliable-tile Storage is available in fixed sized blocxs ana :ne

eist be implemented using physically distributed Type managers request one or &ore of these zlocs

replicated copies of a file, or a gloal databse" at any time. A Type Manager is solely responsiole

migt be isplemnted as a set of partitioned for the data it writes to the block.s of storage.

dLstributed components. The consistency and The kernel Woops track of the ownership of *locX.s

coordinstion among the distributed components of of storage. The routing of invocation requests to

the concrete raprosention is specified In the type Type Managers Is the major function of the kernel.

defilition and enforge by the distributed Type Ea ca. is an operation Invoked against - o osct

Mamler. Unlike the centralized objects, an that is h eld by sae Type Manager. -oration

occurrence of a distributed type does not have a Switch, which ia coeponene ot.e cemel,

unique nost location, I.e., an Object o a supports this function.

distributed type may mresidte at more than one host
for reliability and performance reasons. An

occurence of a distributed type is given a UID, the
Type "Wager then maps the operations directed to

this UID into a set of operations. which are 3.1.1 The Operation Switch
executed as a transaction, on the components that
comprise the distributed Object's concrete The function of the Operation Switch is to
representation. This mapping can be done at any of forward an Lvocation request to the appropriate
tne nsts wnere tre distributed object is Type Manager at the local or a remote noAe. T?'ese
conceptually wresiditnlg". The operations Weined calls my be from a TypN Mger or from '."
for a distributed type are Isplemented as network driver. Sacn cal. contains the following

traniactions. Informtion:

1. The extended UZI) Of the object aPinst

3.0 STnrJ OF THE Z= $YM which the caU- is Invoked.

2. The extended 11D of the process Invo ing
the operation.

Zeus is essentially a collection of Type 3. The extended U1D of the principal on anse

Managers (TAs); typically, aany different Type behalf the operation is being invoked.
managers coexist on a nost node. The core of the
operating system consists of a set of Type Managers 4. The operation and a set of parameters.
that support cap ilities for defining new types

and object nstances in te system, authentication The Operation Switch ueWe te host hint field

of users, naming enviromelt for eec uer, ONd of the target Object's extended VID to determine
reliable process and tranmsetion mansmet whether tfae object is o the host or mst. If it
functions. These system-defined Type Manes is, it um th type unique number of the Object to
reside at every lade in the system. direct the call to the prO Tv-* Ma ager. If the

object is on another hos, V.. Operation Switch
instructs the Network Handler to send the call to
the other host.

The Lowest Level of operating system at ach

iode is called the ernel; the kernel vLrtualixee
the resources at the nost so that each Type Mmanger
can *e viewe as having its own virtual processor.
The kernel supports InterprOCes cOemuLcation, 3.1.2 Unique Identifier Gne4ration

primary storage management, processor scheduling,

interfaces to secondary storage devices, and VID The atype* and ,instance" fields of an

generation. As sow in Figure 2, aU Type exteume VzD are unique numbers. Each of these

Managers at a node execute over the ahetr am iqAIm mUs consists of thr fields, the host
macnie Interface provided by the kernel. The identifier at the hoa at which they were

kernel mltiplexes the procesmr between the Type gen rtd, the incarnation nmiber am the sequence

Managers; it also handles all Interrupts due to msr within an incarnation mbser. The kern1el

storage devices and the coemunication devices. contains a copnent, called t.e 3ELLISteper, that
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generates scme rAge of ufnique numbers. This section. the Type Mangers for these system types

Component moaiLs the cata.ility to generate are 4efinea. The following are :n System .e
multiple ranges of unique numbers from a Managers wflcn exist at eaca neC in :e system.

Listriamd object called Largestopper• The

se3Unce MOW IS Obtai.ned rm tle SM.L.St-pper# (1) Type-Type maer

which eside wly in thle voltle* storage. The (2) Prc/ess/Tran.saction 4nager

smllsteppr ismea sequence fsews ro a given (3) Principal amd Autlefltic.atIon Manager
incarnlton natme. (it) Sysolic Name manager

(5) Program Manager
In A system where MG failures cA Occur$ each (6) meage mnager

"Oat will glerate a meononically inc.easing
sequence of unique identifiers. If we permit The functions provided by tese .o'7e analgers a&.:-
faiLures, out stiolit tha t every nost Ln Cri Vith Cheir $trJCtUt-5 are IesCr.oea tePL. .Acn :f
syste sa staOe stolge. th.en eacA met wilt Chese Type Managers is considero ajs an ::';ec :r

score the nest Incarnation number, and as soon as distributed type; aml Instance zf eacn .' :"-ee "
restarts an :rasn recovery, it will retrieve managers resides at every ,cce. T.e :::e=

tnsnumber and Write 0.o stable storage tioe net Type Managers for a given -I;* f~
incarnation numoer. Thus even :nougn some part of co=Peratively to Provide t.10 aos3-ac::,. -;

a -age of sequence numoers say not be generated, single sy3&em-wi1m TYPe fmAager.
:-he nosts will generate A 2ontOniCall Y ncreasinl
sequence of inique numoers. 3.2.1 Typo-Type manager

It we reove t* e assumption of s2tble storage The definitions of new Type anagers '..s

on all nosts Iln the system, ten O sts Iln tile introduced In tie system by using the Re*Canli.5
system can be divided Into two classes: these that supported by a system-vide object called tne

gese stable storage and them* that do not. Each Type-Type bner. Thus, tae rype-Type Manager
host vith stable storage in addition to tae Llemenits functions to create, alter, delete Szno
Sal13te;per has a process called the Largogteoper replicate Type hMgers. The definition of .ne
Wicin tzgether with te other LargeSteppers in te Type-Type object given noe is an adaptaion anr
system generates neow incarnaltion numers. The eitf xio of the Type-pe concepts originating in

algorithm used to do this is specified in a tile R T [ tMV21 IU operating system. -he
sepate p:aer ~U~f facilities provided by tri Type-Type f.tr.-rer

Include an explicit commad on wnere to "-.v4-
3.1.3 Network Handler copies of a Tye manaer.

This component provides a simple dataga Type msnages Are active objects. At any
.evol of transport SecnAanhiS between different point In tife, ae or more copies of the 7yPR
4erneLs. It interfaces w:n the Operation Svitch. manager for a given type may oe active. By act., -.
The invocation requests for remote nodes ae handed we memo that eiter vithlI the .Pyp N gger cal
over by tae Operation Switch to the Network aainst its Object instances are in progrems, r
Handler, Wtich a the responsibility for tat some of toe fucations it Implements nave
delivering it to tie Opera:1on Switch at tie Invoked calls am soe Oter Type Mnager and are
destinatio nmast. Similarly tae repsP e Imssg8 mIstiIn for a return. This complicates trio
are returned rom tile server to tie iwtVmkW by the Type-Tm mnager because it must ensure that all
network handler vLa the Operation Switch. copies of a Type Mnager are in a quiescent state

and will stay in that state before an ope.t!oi. :an

3.1.4 Kernel Initiator be ilvoked against that Type Manaer. However, fe
believe that operations to modify existing 7y:.

The *ernel Initiator nsa two functions. The Managers vill be quite infrequent. tnerefore.
first ' , ction is to restart a nest ,ane it schemes b ae on global synchronization can be used
recovers from a failure. The secand is to Lnitiate for conssoncy management.
a tam. MoCK t&a. requir 4 Ocr amint of
nuo e eepn. ot reovery implies the setting up 3.2.2 Process/Transmation manager
of twaos for tane dimpmw of tle emnel, uamng
the log for the Typep-Type alager to treat*, Presses anld transactions are active objo e.
delete, or modify the Type managers on the host, in the system trougl ich a user carries out
and obtaining a new incarnation numer Ad tile operations in the system. Transactions are atoma.:
Saa.ste;per sequence numoer. After tae above p-ocess, i.e. they nave an 'all or notntn 5 "

ac:.ons are successfully completed. the Initiator property. The tran action Facility vith Its atoam:
:an !,at :ontral to eno tas dlispatcher. Property provides a powerful ecanisa or rtel.ao;-

operations. A transactLon either commits -r aborts
on tereination, and if it VortA thnen no trace :f

'.Z System-D'efned Type Managers its ezecution is left. On tihe comaLtent of a
ranmaction, all updates made by it are ptmaent.

43 mentioned previously, Zeus is a set of Type
Managers Whoe mmes my potentially cilnlog Ve rQquL that a process mut invoke a
dynsically as Type tAges are cre ted. deleted. dransmetio n order to modify permanent shared
and 0o1fied. Therm Ls, however, a subset of Type object in the systsm. The changes to an object

anaeors called the System Type Wtnager weicn are rtcrded U new versions of Ue ooject. 40W
perfoca tah essential services provided by tfle versions of tae ooject are committed to becoming
cAe~eL of a conventLonal operating ysteom. In tAis perlanent at th end of a uccessf"A completion of
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the Coi rtcol. as lS it. vass ctrut.aC0. mAfndatory 2leC~point. rollback trC0vp of a
he Invoking process. and the Type Managers of tn process can avoid undesirable elgatit~la of

modified objects. UnCONSItted versionLs are transaction ezecution. However, this say cause too
discarded on explicit &aort comma Lsued by the frequent cfteckLpinting of th yo ing process.
t~rction proeo r R o tLe out due to Therefore tW Second solution in to mke
Inatiity. Checkpoint of the Lnvoking process an option that

is to be specified at tre time of invocing a

Procesmm and transactions can establish tasa . Appar'ntly this cnecxLnt LI not
recovery points by chockpointing. 3uch points are required for Ldepotent transactions to guarant..
used for the purpose of rollback and restart of a correct ezecution. However, a process invoing an
pract" or trasaZ ction. OC.kpointing is t Ldespotent transaction ay elect to r-rte a
.lective savinf of versions Of process or checkpoint during tne transaction :cafit rt:::
trtsaction Objects. NOte that With tre ab ve for efficiency reasons. For ezaA m .. '

scleme for ciecdkointing. ol.y th state of thle transaction requires extensive ::8purar:zn::aa:.-
;rocess (or transaction) object is saved; the to checkpoLiting the Invoking ;recess. aia .f :re
states of objects modified by that process are not possibility of a failure is signifl1cant, - may :e

saved tn the checkpoint. This approach may create lesirsale to nave a cneckpoint as described above.
preoaea for error recovery since not all state The decision of wien to checkpoint s Left o :a e
znanges of the process are recorded with the process that Invokes the transaction.
necxpopi t. However, one mu t remember that all

updatem made withinl a transactionl to permanent Tm* Procoms/ranmactiou Manager also supports
objects via their Type Managers are saved an the nestinlg of transactions; such nemted tranacti:n
stable storage aS unCom itteAd versio. It IS, can execute concurrently WitA the parent
therefore, necemsary to exersuZe some discipline in transactions. The retted transaction facility
using cneckpoi l. and atomic transactions. The provides the USeS Ncnsam to Introduce
following discusses how checkpointing can be use concu-rency within a transaction. The commitment
correctly to support recovery. of a nested transaction Ls dependent on tie

commitment of the parent transaction.
Te first problem that we want to address is

now one guarantees correct rollback recovery. One 3.2.3 Principal and Aut-hentication anager
requirement for correctly Laplementing rollback Is
that the object manager for transactions must The object protection systes in Zeus depends
maintain for ecn transaction a list of UIDs of tioe on the ability of the individual Type Mtnagers -.,
objects that are affected by the transaction. The identify any process wnicn requests an operation :e
reason for this is that in the event of a rollback. perforsed. In addition, the Type Miagers need .:
It requires that all changes to objects made by the be a e to determine the ultimate Initiator of .
transaction after we checkpoint be discarded. The action ,iA '  resulted in such an invoca:.:i
Lsrof UMea of the objects that are affected by request. We call these initiators of aczicrs
the transaction provies a mm for notifying princLpLls. Principals are permanent objects i
theme oj cts to dscwd Ute aborted versions. Zeus and they are the only objects which carr Una
This list is also used at the end of the authority to perform coaputations Involving ot.r.
transection to conduct the commit protoco. The objects. When a now process is created. I* .s
discussion in the preceding peaaap implies that oa- -d by a single principal and it retains thils
for implementing rollback. tiesptals must be principal association througnout its lifetime.
recorded with each checkpoint and each version of
ooJects. This requirement stem from the fact that The two fundamental probles of the prztect.ln
tnere is not a one-to-one mapping between process system, authentication and authorization. Mcti
2r transaction cneckpoints and versions of objects Involve principal objects and tine asociatitn :f
affected by trem. processes to principals. The problem, : f

authorization, that is detervining on wrose erona
a given process is currently working, Is a Fairly

The sesi pr ls in te n bewe suale matter since each process is always wrting
secod prolss c t is the cointecto be for a single principal only. When a process

proceine che miLng aa4 Commitment of a inves an operaton on a typ Wnage, * he

transaction invoked by the process after that invo tpon raarding a yps ana princial

.heckpoint. Stuppos a prace"e crashes after inomtn readg s V adpicpl

Committing a transaction. In such a CAM association is transported onto the virtual eacnine

;recmes restarts from its last checkpoint, but the of the target T" Manager. In this way. tne

trasactIonJ wet have oeen comitted since we principl which owns a particuJ.ar process 's always

estaa Aisnmet of this Check Lnt are not - done. 'kown y any Type Manager on which It mames

hus sme coamitted transactions stint be executed Invocation requests. :n addition, since ;rcCss

more than once die to the restart. If a identifiers are transported to and froe ?vo!e

transaction is nonidemotent, i.e. multiple Manager macnines oy system Code, a process Li

executions of the transaction produce different unable to forge its own principal association to

results. a problem my arise in rror r r pain access to objects its real principal L noC

since rollback of te process may cause comitted authorized to access.
transaction to Ie executed ain. One solution to
this problem is to a eays tre the invoking Duraing login, a user is first asked to identfy
PPomm to checpoint concurrently with the hLmslf by giving his unique principal symbolic
comitting transaction. CoeckaiLnting is part of name. The login process (aI called tile
we comlt protocol; if the protoo determine@ to Autetication Mnager) tries to find a princi;al
art, the checkpoint LJ discarded. VL t this object containing the same symbolic me. he
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principal aoject :ont.ain. all thie pertinent is Important to note that sh tn.g a :ontest '.1 -0
Lnforemtion About th.at user. no user's password way enh lces or alters the acce"- rigtj to any :f
is stared with the principal object, allowing the tre oojocu, whoe UlDs are in e snared context.
Authenticatilon PtrW to perform necessary Access to an object is still oardinated oy Its
authenicatioAn cbmt.. TwM other pieces of assoCiated Type Manager.
informlion regarding te seW Art maintaine
within toe prinipa data object. One is te 3.2.5 Th Program Type Mager
Unique identfter (UID) o the umer's systolic name
contest. ,nica Ls described in the next section. The Pro"r Type a ger '. 3oe t"VsL: r'1 :
The Other is t" Uri) of the coma d Interpreter or both program test and ooj*ct code. -:r.a .: :,
snil program of tle LOgg d-Ln principal. Wefined to 0 a test 20:.ct "-a, ::uc..es

correctly. 7hus. the :r-tatLn :! 4 :r-:g:u A
Since the authentlc.ation manager must T!d a requires troe ,er 13 3coO.1 :t e 1 ai.a

principal Oject given only Its symbolic name. it wital a correct przgram or a 1QC.Ar1,e.1 :c.~.
follAows r this eame sust 00 unique. In arer to unLt of a program. .le ?- .- s . a -a4 e -

ae it convenient for unique nmems to 13e assigned addition to is f,.nctizn as a ,o s:rv laJ Ii

to princlpaLs. Zeu , ra the concept of a working ouilder ot prigrams. "us. a ier :a a-.. .cn
group ('G). Working groups are used to form a toe program Type Manager to OuL. a iew :"q:-rIJ
strict hierarcny of principaL names. This fro. some specified components. .s .1.
nierareny of nmes is similar to that us" in the function oa tzhe Program Type Manager 11isefj. -z
,titics system. They contain sembrs which my be the systee to build new user types. A -rtqrA
either principals or other working groups. The object LI defined to be a collection of 'erslon.s of
root working group hU a mll name and is called a single program. The criteria for ret.aining
toe null worAing group. The unique name of a progam versions in the system are letined .y o
principal or worklng group is formed by Users.
concstmting the name of the principal or VG with
the names of all ot Its containing working groups.
,his nierarenica. structure also forus tne MLi 3.2.6 essage Type lanager
Tar ot. e symbolic names In tile system.

The message Type anger prov:ies for "re

3.2. 4 Syuoolic Mame Mnager synchrfnmu5 and isynM-OnW exctange Of message
between processes. At the time a mesage .3

!o provide oser convenience, an object can be created, the sender can specify the rell•aL:;'!
given * symoalic name that is used wmen referencing claSS for that mesage. 'he reliability cla.ss -
that object. A user in the system sould be aoe message reflects its availaoility to the r:se: c -
to use sysbolic names within Its contest in the face of one or mare nost failures '.I -e
Ldependent o other users. Fir example. the same netoria. At the Lw end o reliao 1 ity there i. v
symbolic name can be used zy different users to volatile message oojects that disappear uipon ::

refer to different eojects. Similarly, different tailure (if tne object resides an the failed MCsC..
symbolic names can be used Dy different users to At tle mil end of reLiability st.aOLe essua e
reFer to tne same oJeCt. The yooollo Na objects nave a replication factor of n where 1 .3

manager saintal"Aa te mapping between a symolic the nuew ot most .. sn the network. :'o

name fr an object an tat oojeot's MID. The additionglintrmeiate reliability classes exist.

mapping function is many-to-one in tkat severaL
systolic maes may e mapoed to one object 13D. tl).-prOCess comwicti1).on may occur .- t.een
.'*e 3yUo1c names within a contest oust oe unique. processes that are Local to a most, or reeote.

either case message operations are oer.zrse4 y toe

The objects which are managed by Ute Symbolic sessage type manager Local to the -ost :f :-e

lime Manager are symbolic name contexts, where a InvoKing process. Any remote act unl::'

:ontext object contains t.ne above mentioned required by til operation is lone by per Wessaqe
,aeing. A contest my be viewedam a pivae Type Managers and is unseen by the processes

directory at relative symbolic nae". Each Involved.
princlpLL is given a contest ~en the principal is
created. It is LnitiAlized with toe symbolic nm
o aoect UID maLings of certain system objects 4
.mlcn a principal must know in order to function
:rooer'/. The Systolic ase Manager maintains a
.aCa )LSe t.A :Inttans "-Me context ojOct3 and the :n thNis .aoer we %av* ;resented n :yer/..4 -f
- rmre state of Iie context operations. :n mee eus istributed operating systes .n':- ..s
event of a failure the 4ata base provides the suitable for nilAty reliable a oiLc.atioms. :eus .s
recovery of Pe state of tne Syvaolic game manager an oOJect-oriented system wnlcn is novel 1n tne
and the recovery of the context ojects., sen.e trtat It integrates any of tne :cnvenpt:r.

databse managem.nt functions into t:e operz'.-n
system. Recovery and syncnronLz.at ion ar-I

Contexts, Like other objects, may be shared trSMPrent to toe application programmers. "!!e
among principas aving the proper acc= and are softmare far tns system Looks no different than
pert of the aeclmalsem by "Bien principals wa, snae trA conventional software becausme of tale reacts
oQjectS. If principal A wisnei to Uwe object t Procedure call mechanism which mass accessing of
with Principal 8. A msot giv 8 access rights to I reacte and local objects Identical. 7,J
and mot also give a hse (ID of 1. When A snares distributed operating system is UsIcally I
its contest with 8, a is acle to obtain the UZI of collection of system and application defined zoec.:
I ur an agreed upon symbolic ame for . it managers (also referred to as ,ype alagers +e u.se
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Perfarmeae models of a distributed. r*el-tme eommai ad centrel eestea ire preeted. Including models
analyzing feult-proepagtiowo cnd associated fault recovery strategie. The techniques end tools described
here are applicable to the 4eel*g and analysis of distributed systems to general and are ready ea available
for mie today by odeling practitiofers.

'. ZWOUCTOU perf ne e modeling Into the reals of dtsibuted
uymtes Ln a practical way.

?ruly distributed systeme are now finally beginning to
appear Ln sub mtntiAl number in LAngrfecloa moneg~sot This represenetatio of the perfore m ce of d isIribu ,.
aggLigci.tote. Die1ributed systems introduce a now se systems has been developed in the contoet of % Project
of implementation techniques and mecanisms nd thus a for determining tie coest of Latredu4ag very high
noew set of performanee limiting factor. These fact r reliability into listributed systems. This project to
-nCrude 1) the aditional interfaces and Mechanime t naed ZVJS 3H204 ead is based on te concept of
integrete the local prececiag at a given site i objecl-ercteeod prgramoia. rach eatity in the system
global resource eiromente to well as 2) the actual belongs to some object type. cnd n object Latanee
coats ot communoiation ad data movement. encapaulatee the data siructure of the object and the

operetion that cas be Invoked glehact Lt. Objects %re
This paper doe ee " Integrated practical fadeft identified bye cyctem-stde unique Identifier: opera-
ftr Letroduesag thee Laerface ad a8chesicue Into te tiona can be invoked against objects locally or trm a
pertormance mdelIng of truly .ietributed processing remote host. to this context the need ftr a :*aate
syteet. The paper begia with a conceptual deesription procedure call L obtov. The interest La this project
of techniquee for 4strbuted omputing ea the added L, Co nec uen the relative costs of system execution
Processing that reslts. Thi additional Preece0tam with and vttlt reLla Iity mecnmse. The cyctem we
b* viewed Ln a hierarchical tachion: The lovet level are modeling has not. Ln tact. been ipiegeneeol. he
is a lagic.l rersoveceatian of a netvae. The roproec- techniques we define tar sodeling Itatrbuted systms
tation which we use here. tar the scae of coacretenece. do. however appear to offer a breadly aipplieable frese-
is clusters o hosts canuected by Loa dislanee link. vol up" which to extend perormeace models of a trodi-
eAch cluster is structared internally Uing an Sthernet ttonl structure directly to distribted resource
4ETrei. The Met higher Level is the Laterface at eevironenets.

tenate Procedure Calls (RPCe) end aeecagec to the
i0c:41 Metwort defined by pecket tranmiseion. Me Section 2 briefly deecribes the [Pr, notation and he
:ouple narmal local processing in hlgher level language PAWS language. Section 3 describes the physical e9eeu-
itt remote resources. Neccage based proceseing way tios eavironcent involved in this project. section 4

alco be ade visible at the appLicltina level. ot RPC illustrates hov fault-free distributed systems can be
are the mechaensm that *oa I naturlly introduce remete modeled. aLudinq models tor 'he RPC. hosts. cnd Zam-
proceeing Lato normal. procedural programs for Inferme- mUicatiOSn. Section 5 istrdUeee fraults int physicL
tiesfi n aement ealicltoftc. resources ad demontrate* how these can be provegated

upwnede to the uiel of thee resources, thus permitting
?hese distributed procesiae cyclem elements are recovery strategies to be modeled. ?he *PC can be
described in a format a"ropriate for developing perfar- viewed as an ezempLe of distributed system usage. Other
seace models. Thie description to then 4eveloped Lo applitions could -e the payeicak resouree 'od-1s *h %
tor99 of inforlieion processing graphs ' :Pva). a 4L- s9iLilar asehion. 'hus, we :reee%.t here i set :ee-

fra.:~smaworlt for combinq wargloid. system niluac that 15" it ice*d to -%odtl - w~de 3f-v
3 rz-.Jrv. 2nd Plariwcrm can .qgurcattns. "%* :Pe.8 cn be lisitLbutod vset, uscc.
-.nc4r. of* is 4eneric models free which specific evalu-
1ttle lodeLs Zan be constructed in ter"s it some simu- 2. ni. nmxA.Ot a S:.G M APNS AND PAWS
'ation 'or analytic) modeling laneuage. The %oadeling
en4uege Used &a thLc project we the Perfarmaace ?he performance model. deceribed here were level ".d
Analyet'S dor aech System (PAWS) Zr3A84]. A limited using IntoreellaM Procesing -rsphe (rr'.s end *he
nuaber of coples of tae PAWS odelec deseribe, here are Perfor nce Analyst's dortbench System (7aV3). Th L
available %a quee. The models deecribed here were ceties briefly describee EPc qnd PAWS: tar a complete
developed in a top-down. hiererchical encer In com- description see [LRA8t].
junction with the top-dae desig a the distributed
System. The Ms ewn here reflect this hierarchieal The ies of le id PAWS to diagrammed Ln Flgure
developsenu: the matiel IlTe document. the flaw at 2.1.
nformation at the higheet leveLS Ln the System. md at

our ezplanetion proceeds, each component in the high-
level :PCa is espended until an appropriate level of
de~ali. Li reached. It i. loticipated that these

04elLa4 techniques and tools cam be ueed to estend
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(1) Resource samagemet medal represent $lot**
resources (procvoters. sme"r. communication Links.

Real disks. cepytag machias. people. etc.). A transaction
Systemnormally requests the use of certain resour-es and may

have to queue (watt) for a resource Lf the rpus
cannot be fulfilled immediately. Thus. rsource nodes
have queues associated with them. Resourtes *vey ),?

Declare lasified as active resoures or 2assive rysours.

Details Conceptually. an active resource in something that ict
or worits, such a;- a Processor or disik unit. An ac-~iia
resource is reprsented by a SERVICE node in PAWS. A
trsanmetlea arriving at a SEVZCZ mods requests the %so
of the resource for a specifiad amount of tine (usually
drawn from a apecified service time distribution). rf

Perfrmace PVS jLV5theremseurn is being used. the transaction ous t queueEsiatsPd*L (wait) util it to scheduled for service according to
the quetewing discipline specified for that SERVrCE node.
After receiving service the transaction exits the nodeFigure 2. 1. fte fas of IM sad PA11 aLong; sas edge to another code. Figure 2.2 shows a
porties ef asD ZIs'-s "ereet a SUVICE moe eased CPU.

The modeler begins with am asiatise or te-be-datiged The citele*reyrmeesto the Processor and the open box or
real system and abstracts free that system a hight-level sqre represents the queue for waiting transactions.
picture of the flow of information in the system. This
Picture to called am MI. The details of each pert ofCP
the picture art than declared is the PAWS simulation
language so obtats a PAWS model, which to evaluated by
the PAWS sieslatar to obtais performance statistic - IC )-alltisates such as response times. throughpuats,
utilizations, eta. FL'w0" 2.3. =vies sode Cri

2.? 07011RATON NOCUING =RAMN A passive resure doeesst itself do any work but is
some9thing tmst be poese by a transac tion to do

Am IG diagrams the flow of Informatiom free resource to worit. lneries. buffers, and control Points are
resource In an information rseesing system (eg.. so asamplea of passive reaemrces. fasstve resources
Figure 2.4). Zasfornatiom procesetag: systems. sek as tonally eer is groupot for example. menory may be
com4puting. assuainatiom and office systems. can be regarded as a group of pages. The anount of tise a
thought of in terse of work stations or modes at which passive resource is held by a transaction is not sp..c&-
information is processed. Zn a computing system the tied by a erwice time distribution. After acquiring a
nodes may represent control processors. disk maits, passive reemnre (such an nmery), a trasaction typt.
device controllems. eto. Wowe hae label@ donating the cally use@ one or more active resources (processors.
form (transaction category, transaction Phose. btsnnhing disks, etc.) boeore releasing the passive resource.
probability) of information flow aLong the edge. Thus. a passive resource is represented in an M? by
Information flows in discrete uits called transmetlons. two nodeos doe at which the resource is taquired and
A trqnsactlon In gemeral represens the data on which mie at which the "source is released..
the nodes of the information processing graph operate
ad in particular may represent a job, program, task. there are two types of passive resources: TOKCENS and
scheduler, message process, person. or any such entity RICROWU. TOXINS art socknired at ALLOCATE nod*$ and
useful to the modeler. A transaction gets proceesed Is released at X9LXASI nodes. NENROW1CU are acquired at
so*me mantner at each noda and. spell completidon ORPIN codee mad reies"e at KLMN neds". TOMCS may
processing, moves along the direction of an edge to soe be uoed to moel Input sand output buffers, channels.
other node, for additional preoesin. Several tressee Iegas, deosn or control poato. communication Links.
tion may be simultaneously active (beling operated upon) and other passive resources. Typically, a separate

a t the arius nodes of the IF. tken is used to represent each resource (bufer. page.
*99oist 4 ateoryanda pneewit eah t-on. ae.). and these tolcens are partitioned into type2 with

d. 'eocste caegoy an a haeewit eah tril *Aos tokcen type for each type of resource (input aufrer,.
SC1.',. The category of a transaction is e name sain memory pages, etc.). RENOUtES are used to -sod@!
* 1enoted ty any string of alphanumeric symbols) and is contiguously addressed passive resources such as %a%.
2@raasnemt: a transaction has one unique categoery %smort**. extended core storage, and diskc space.

~nrugnutits Lifetime. The phase of a transaction Associated with euch memory is a memo"y management
denotwd by an integer) may be changed as the tress- athsm according to whichk blockts of memory arm allocated
action prograsmem through the ZIG. The processing of a to transacotions.
transaction at a mode ad the routing behavior of a
transeaction from node to mode in g"moral depe"d on that TOXWN do met have to be 2SILZASd to the node at which
transeaction's catagory and phase. The general form for they wereA T9OCATU. At a RELEASE ned* a transaction
denoting a trasacsto category and phese in (etoegary say specify Iny AULOATN sode to which the tokes are to
name,. phase nmber),. be relemsed. -1CH11OMaT be cemoted at CNFATR "ee and

dest 01e at W9MfOT 010d1e6 Figure 2.3 shew* a port ion
There or* five casses of aedes used is the CPU of am IN in which transactions a) acquire BurroU tokens
notation: 0) resource management nodes. 2) rGuting at the AU.OCATS neo named MIT. b) creste SUPPER tokeons
nodes, 3) arithmetic nodes. 4) INTURUPT nodes, and 5) for GCT at the CRECAfl node named N4AKE. a) destroy BUFFER
11391 nade*. Each class of naos is discussed briefly tokens for 01! at the DICTROT node named KXLL. and d) at
below, thes RRLEASI node named PVT, release BUFFER tokens for

the 1AUOCATI "to. nMed ="ORZ.
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Assoiated with seck mode at which reseurces (active or started at START) travels from 1SP1.? to the branch node
passive) are acquired is a queueinig discipline. i.e.. TIUAXCN. from which it goes back to ?TORKX with prove-
the discipline according to which transactions enquene bility 0.9 or to SINK with probability 10
if the resource is not available imdiately.

(3) Arithmetic nodes are used to carry ,ut no9
- ~ tioitcl steps and to modify silaulation varxabs. 7o.ve

- j........ or* two typos of arithmetic nodes: CORPJ1 nodq19snd
ICHANGE nodes. Each transaction has 1oca, ier-.ao.e

I Iassociated with it. In addition., the network mas some
global variables associated wi~th it. A CORMtU node .9
used for assignment of values to and conditional opera-
tions on these v riables. A CHANGE mode Is used toCST PAuZ KILL PUT GXTNCE Change the phee of a transaction (probbilistically).
In Figure 2.5. a transaction arriving at the cosputeFigure 2.3. ALWCAYL CRUY, 010 M" NU.MB ft * nedea ACOMP increments a global variable named COUNT and
proceeds to the CHAXGE soda named SWITCH, which changes

The rate at which an active resource processes the transaction's phase from I to 2 or 2 to 1.
information or the ability of a transaction to acquire a
passive resource may depend os geets Occurring is other
parts of the system. Zn such caes. a traneantion at ITRS HNTHS
a 3?T node nay request a modification to the service GMt-CVV o
rate or power of a SERVICE. ALLOCATE. or GETREN node.IFTHS"2TENAE

(2) Nouting nodes may be used to create and destroy ACORF SWITCH
transacilons and to alter tranmsacion flow through the
system. There are six types of renting nodest SOURCE. fe"25 f"et oe
SINK. FORK. JOIN. SPLIT, and BRANCH nodes. At a SOMMCE *"23 Attsi e
node, transactions are created (arrive) periodically (4) An IXTUI2UPT node is used by one transaction to
acording to a user-specified interarrival time distri- interrupt the processing of another transaction. The
btion. At a SINK node transactions disappear free the interrupted transaction immediately departs from the

system forever. A transaction soy spawn a musher of node where it was interrupted with a now phase assigned
children transactions at a PORK node. end the children to it by its interrupter.
may coalesce at a Jula node to recreate the parest.
FORK an& JOIW ases tire sel fat S040tag Mhe ()A tvansaetien arriving at a USER node invokes a
synchrontsation of concurrent processes. A transaction amrvritten PORTRAY Subroutine that has accss to the
may create a nusber of SIBLING transactions at a SPLIT global variables and, the transaction's local variables.
nods m uch like a JOIN node. The transactions created The US code facility akes PAWS an extensible system.
at a PLIT node may, for instance. be used to model the

operation of Smosag" communication. BRANCH Rede" any be 2.2 TXE PAWS LANGUAGE
Used to facilitate the specification of breaching
(routing) probabilities ad to collect statistics. The PAWS language is declarative rather than procedural:

the user simply declAres the charic toris ties of theFigure 2.4 illustrates the use of the routing nodes. system being modeled as opposed to coding 4etmil siaiila-
Ench tranection enters the system at the source node tion alaorithms. An example CPU node definttion in the
STAR? end proceeds to the fork nod* TF03K. whore the PAWS languaite is shown in figure 2.6.
transaction creates two children and waits for the
children to Join. CP

TYPE sm ie
QUANTITYI

U82ENU (3ATCM.ALL) XYP(tO.Ota.i);

ACUTRA WN Pigure 2.6. heapI. Node Defimitio ia PAWS

Nore, th naeoft noei CPU. the mode tyve L9
S outC9. there is server, the quoueing it@-totn- too

.1 round-robin flied quantum with a fixed quantum of '0START? ZIORK TJOIN TsnIT ?IK time units, and all BATCH transactions regardless of
phase requst service times drawn free the hyper-*xpo-
aential distribution with seen 10.0 cud standard

9CPV .9deviattos 14..

Pigube 2.4. Reatifg No" PW3?ALEZUTO hYlNN
A87 network software must *toast* o am underlyimgEach child requests Sad usee a proessor (ACM or 3MW) system. The physical System involved io the zIUS

before proceeding to the 3oin node TJOIN. As soon as project consists of clustere of hosts that are connectedboth children of a transaction reach IJOIN the children by long ditaence links. the hosts in a cluster eredisappear and the parent (still seiting at ??oat) conntected sing a CSAN/CD local area network such as
tepLaces its children at TJOI3 snd proceeds from ?JOIN Ethernet. We assume that a message is broken up intoto the split nods. TsPIT. where a sibling tranaction is pockets at its source #ad re-assembled at its
created. The new ly-creeted siblingl proceeds to send a destination. This implies a universal packet structure
mssnage before leaving the systoo at the sick "o that all the hosts in the network understand. T'he
T3191. The origial sibling (the transaction that network emb-odel described In section 4.1 assums this
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underlying physical eoooiem esuyireameet. Newrthe- :..-a.l a-..
lea. the gemeral principles presented in this paper are
entirely independent of that Oviroineat.

4. TIM 33M POCM2D CALL

In this section we develop a model for a Remote
Procedure Call (&PC) from the applicatio n loel to the
level of packets transmitted through the network. The

PC model of distributed programming permits its users
to access remote programs using procedure or function CENc
cal soeantics. Thus. an RPC can be viewed an a call-
response mosage pair. A number of schemes. ineluding
the one presented here, choose to incorporate aekaovL-
edgomonts for calls and reoponse*. Figure 4.1 shove UM
the tPG foe a instance of a call. There are three
sodas: STCALL.. RPC. and SEZTAL. The node IPC t a
complex (i.e.. htglh-level) PAWS node and will be
expanded Later in this soctom. A complex. high-level _j
node is denoted o PGOs by double vertical end bar*.
The nodes SZTCALL end SUPAL are PAWS COIPUTS nodes that
set the call parameters sad iopeot the results of the
call. ?he call parameters are call source. call
destination, service roqutrod and call miso. Those
parameters will determine the serviets required by the
call enrouts sad at its source and deettistio.

"igre 4.3. IN for the KRIG0 meege

71gure 4.1. IN for s IN A trensetom oeteriag the &PC Sub-model creates a child
traneaction at the CICUK node. The child transaction

Figure 4.2 shove the sequence of messages eschonged repr es ts the remote procedure call: the parent trans-

during an RPC. The caller con proceed after a reompnse nation remains in liab at CICK untl the child arrive%
has bee received. 7Xhevise the call@e cam Continue at CJOl. The child proceeds to SWUMPtl. where the
after the response i s"t. mosage parameters (saore, destination. and type of

ssages*) are set, and then to NET. which delivers mes-

sages fro eost to host and is described in detail
0 call later. fn exit from 13?. the child has arrived at its

Idestination id procoods to C .T1. where it creates a
(D call ic sLbli4 transactiom to model the Call acknowledgement.

cal calle Immediately after this split (i.e.. in parallel with its
oDo response newly created sibling) the child proceeds to TD. which

models the call processing. On eit from IND. the child
i ( pets ts ne its m esage parameters at SCTMAIN ad invokes the

33? sub-eodel to model the response. after which the
child create@ another stbling transmction to model theFigur 4.2- vh ftmg ]rt" Tfo ape resne •elsowlodgipe•&. InsedteLy af'ter this split.

tho child performo@ ajoin operatton at CJ0N. which
to Fiure &.3 o develop the 1G for th* message remove@ the paret rom Limbo et CFORN snd sends the
sequence of Figure 42. This Z G is an eopmstee of the parent to CZ11 to doprt the Rp sub-model.
complex RIG nde of Figure 4.1. All of the twamemOtiOes
that flow in this ZPG are of the category CAL, thus We next develop the complex node NIT.
permitting a simple structuring of the system. The CALL
category uses the complex node MET to deliver messages 4.1 THE 31?VOK SUB-NODSL
fros lest to est. The complex node ?ND is used to
;rocess cal.ls at monst. The node SEPARR sete the This section presents a expansion of the NET coaolex
paraseters of a message (i.o.. allow the source, desti- node In Figure 4.3 and assumes a physical eocut'on
natLon and type of eoesage to be set). Although not enviroent am described in section 3. The overall I0
show" in Figure 4.3 the dtfferet phase* of the category is given in Figure 4.4. Briefly after some computation
CALL are used to distinguish between the dtforemt at the asurcs host the neee is brcke up into packets
aessages sot to achie e the RIG. based om its else. The IC uses the fork-join pair PP

sad PJ to model the packetisaton and r*o-ee6bly of the
meseage. Te comptatto done when the message is sent
aid received is odeled by the complex node CORP which

pren et hemt cesmptatie, boh generated packet goe
thregh the setuOrk via the complex nedo PRYSMD which is
doooribed next. Uetice that wLthia this IPG there are
three categories: before N and after NJ there is the

category CAL. between R? and NJ there is a category
RSG. and between P? and PJ there is a category PE?.
This was done because we felt that the packetisation end
re-assembly processes are a part of the message level.
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(FRY) (PU!) 4.3 A MOD PIO T3 LOCAL AREA NDOEtK
(CALL>_,I o _ KS P" The packet that estere the LAX sub-model knows ito

source. its destination sad the Ethernet on whicm t
must be broadcast. Further. at any given tLs. a nost :an
attempt to broadcast only a singe.. packet on the '.An.

(CAL) (RG) (SG) Internal to the LAX the interactions are %ore :o-vD.ei.
These are therefore developed in the :omplex node .

Figure 4.4. Sendiag a Meage

The PICTSVD couple: mode describes how packeta are routed IC)
through the setok. sch be# through the ntwork com U..J ZI
be through a long distance link (LDL) or a local area
network. We define statically for ease pair of clasters i rue 4.7. Nodol ef Ue TAN
In the network a set of paths that will permit trummti-
sion from the source cluster to the deetination cluster. mT CORP modes "pmia represent computation and the GTLIN
Typically a packet will go from source to the first and IULI repreeat esge of a token to ensure that any
gateway via a LAX and the via mo mination of. LDLm host will attempt to broadcast only one pocket at a
and LAfs to the destination hoot's cluster. linally the time. We met develop a model of the MER complex
packet will go via the destination hete's &AN t the aodes Figure 4.4 shows the correspondiag M10. We note
destination host. The PMTB node iU epsade" is Fgure that OL ((service node)) is the current value of the
4.5. The node IVL30 sets up the path packet whereas queue length at that service node. In this sodeL there
311TL. determines the nezt Leg of the path the packet are three service modest 3-del. P-del. and T-del; and
will tax@. two compete mode: SMYBACK and SETROUT.

The basie notie behind a CSXA/CO protocol io that a
broadcast has two phasest propagation and ransm ission.
During propegatiom. packet collisions can occur. During

(PK. I11n> transmission. the carrier sense mechanism causes the
other hets to hold their packets for soae back-off
period.

f .11 CR I
1nx(TO, -e

I -IC

P4me 4.. The lMD Cample 0ade SET Rout

Each PAWS transaction cmrries with it informatiea OL(t-dol) t-IP
identifying the specific link or local arma network the 0 1 ->
transaction will visit., along with the oeare and VC 0 0
destination gateway hets am the links er loeal area TP 0
ne"works. We neat develop the models for the log - -d
distance lnks ad the local area aetverkm Q.(-dal) ICH8?

4.2 A ROD. FR A OO DISTANC LINK
PC-

he .ona distance link at its simplest can be modeled ce as *

4 f'.rst .one first served queue. We have chosen not to
iodel peciet acknovledgeeents at this level though this QL(P-el)> where:
-an be included in the model. ?he IPG is shown to >-) P-deL - propagation delay node
?tgure 4.6. There LIX io a PCS queue whereas the two NC - I-del * transnission delay node
:ONP complex nodes represent computation at the Mrce 0 5-del back-off deLay node
nd destination of the link. NC * probability of no collision

T? * probability of transmission

CORP lg flre 4.8. Details of CIwA/C) pwtsal

(SIC)(DT
If a packet (transaction) arrives with QL(P-dei) and

1P4go 4.6. 11"I fo tUe lon 3 etes 1.L QL(T deL) equal to sero thea the net Is not busy so the
branching probabilitieg NC and ?P are set to o*e. This

?he node LIX could simply be a delay since we assme is the normal case. The packet will wait until Lts
that peckets are all the same size. Finally to model propagation delay P-deL is over. Then if no collision
packet retranseisuion we have an edge is the PO that a has occurred, the packet will proceed to 1-del (because
trasnsactio takes aooeld the pacetso data be corupted. ?P Le still set to 1) and will then depart the CSNA/CD
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protoel sub-oedeL If a collision ham oecumrr while Figure 4.9 tlluatrates the inetaatiation and execution
the paket to at P-deL them ?P will have been reset to of the coaputation proceoes by some user of a host.
sera. so the packet will go to SETBACK to compute its tach host has a permanent transaction that is blocked
back-off delay ead the to -*oI watt foe that time, ndoftimitoly at SULK. A host useer first eters the
after which it will retry trOefenaaise. mutual exclusion region bounded by the 4L. :AT, nod e

R IECET and the RELEASE node .EREL Ln the .pper :?1. e
If a pocket errive* when QL(P-del)>O then one or nore user sets his Ldentity and the type of t.mputa' i, ,s
packets before it are undergoing a propagation delay. requLres executed in some global wsrja . e "n.n
Thee previous packets must be blocked from going an to interrupts the transaction that r sw--s :'e o -e

tmnsmission delay. Therefore. the nevly arriving wishes to execute on at node HSTSLK. TM,! er4-;'
packet sets T? to zero end proceeds to P-del so that transaction then blocks at WT11Z. The Lnterr*zpted ios"
the residual effect of its broadcast will be felt by any transaction gets the parameters stored .n the variaoles
subeequeat packets. After waiting at P-dl the and ale them to instantiate a sibling computation at
colliding packet fill leave (since TP to sore) to GEDCONP. The host transection then interrupts the host
calculate its back-off delay and thean to the back-oft user tranaaction waiting at node WTIN at node CRNIM.
delay node 3-4el after which It retries trenamie ion. The host transeaction then goes back to node STILK to

wait the next Interruption. The host iser transaction
Zf a packet arrives whe Q(T-del)>O (it can only be I) exits the mutual exclusion region by releasing the token
then the packet sets NC to sero and thus routes itself at NEIL and theu goan to node WTCONP to await tersino-
to the beckoff delay calculation node. Pros there it tion of the initiated computation.
g9eS to the backoff delay node and them to retry
traami ea. The initiated aemputatioen knows the identity of the host

user transaction. On being created it performs the
t.4 TIM PODCL OP A HOST desired computation at the complex node CSR and then at

naode CONPIIZ interrupts its corresponding host user
The handling of calls. aessages. and packets needs transaction at node VTCONP.
computation. The corresponding transactione in our
model evoke Computation at the beets they Visit. The The IN of F1igue 4.9 illomtratee how mutual exclusion
computations have been repreeented as complex nodes In can be mdoled with PAWS. More importantly the host
the previous IP~s. This subsection presents an eapnaded transaction in at any time the SZLING of all of the
model of such computation. computation transactions that are e cuting In the nodes

of the CSR complex node. Thus It can interrupt all of
Ve model a host as being a set of physical resources and them simultaneoualy without being awar of each of their
a set of processe e"ah of which executes one of a fixed dentities. This ti a fact that we will take advantage
set of computations. A PAWS transectiom that wants to of in tho followlng sectl.on.
evoke a computation on a host will instantiate a process
on that host. This process is modeled by a PAWS 4.1 A LOOK BACK
transection of category CONP! that will execute one of a
set of computations based on the parameters set by the What have we accomplished so farl The chief benefit we
instantiator. The processes that execute on the same have achieved is the ability to develop POe and thus
hoot are modeLod by SIBLING transactiona. the advantage atmulation models of distributed systems in a clear top-
Of which Vl be pointed out in the nest etteo. down maner. In addition we have developed models for

both hoat* and local area networks that ere intuitive
Ve assume the physical resources of a host to be a and easy to urierstand. We next tackle the task of
simple Contra! Server Model (c3R). Thus a compatation introducing failures Late the model.
wisits the CPU and an L/o device in successLon oe or
sore times. At all tines a single PAWS transaction of 5. MOD11,IN A ?ULT! DISWIS TD SYST
category CO PT is allocated to a host. This transaction
remains blocked at the ALLOCATI mode 1STILK as shown In We est "ddress the problem of modeling faults. There
Figure 4.9. are a number of faults that can occur. vithtn a host.

individual storage devicee can fail. In addition. a
MYI NIEL WTCOMP host ca fail due to CPU or main memory failure. In the

network. if a link fails them ame communication capac-
9AP~1.iA..2..IA....... ity will be lost. Zf a gateway fails, then all the

3ETPARR links that are connected to t will fail. ?inally. I
. -.. , cluster's local area network can fail. affectinx ell the

" " communicstions that use the local are network to
- - achieve communication between two clusters.

I .RI? H •w do we introduce faults into the system' Faults can
I be modeled m a special transaction category. For each

eserwe that can fail there will be am instance of this
treametion catego-y that generstes and recovers

I failurem according o a specified Time Between Failure

I (TP) distribution and a Tie To Repair (T1!) dlstrtbu-
tion. ObviousLy there will be differeat actions that
need to be performed for each deviCo failure. When a
rereo*m failure oecure all the transactions that wore

:C ustag the regouree must be informed of the failure so
that they can simulate the recovery actions in the

GZMCONIP COMPIUt system If necessary.

Vig -e .9. Com taties en a Met A fault transaction can be used to simulate a combine-
tion of related failures. For example, if the shared
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memory of a multiproceasor system faila then all the
proceeors of the multiproceesor ostem will also fail.

individual hosts.We now llusatrate how we have moeled falures La the
I / /

5.1 COUTATION ?ALLURE OI j. rMR /

Recall from section 4.4 that a host consists of a set of /
resources and a Set of related proceses (modeled am
PASS transactions) executing on it. In Figure '.9 we
depicted this as the couples node CSN. In this section

e ezpand that ne Lnto Figure 5.1.

Ze have assumed that our systee Lo bonegensua is that Pnamr 5.20 sdL of the $Staos Noie
each host has the ase configuration. We have done this
in order to keep the simulation as staple ts possible. Ve finally address the notion of computation failures at
Thus each hot cotains three discs represented as the bet level. tn Figure 4.9 we described how each
couples QPdes. het possessed a single transaction. Further this

transaction instantiated SIBLING computation transac-
tions to execute Computations on behalf of the host
users. This approach pays off when adeling failures
becaue the host's transaction can. when the host fails.
he made to interrupt all of its siblings. These
siblings may be anywhere tn the CSR network at that

CPU DZSC2 DOVE Instant of time. Their interruption implies that all

Computatiom at that hest automatically cease.

We illustrate thie in Figure 5.3. Here the host user

transmation IPO io not shows as lt Figure 4.Q. tn
Figure 5.3 the failure transaction for a host first
waits for some interval before failure occurs. At

P~mi " .1
0  O tb Configuratio failure the failure transaction enters the mutual

excluston region bounded by NEGT and NREL. On
The transactions enter at *"de SYCO which decide* the entering this region Lt bes msutully occlusive access to
n et phase of the computation. The phase of a the host transaction of the host that must fail. It
computation is used to determine the requested CM and then sets its identity in global variables at node
disc service times and whether the computation hae SEmPARR trfsctios. tinterrupts the host transaction at
terminated. In Figure 5.2 we develop the couples node HM16K mi then waits at node VYiNt.
VZSCI: the other secondary store" devices are similar.

figure 5.2 consists of two interacting IPa. o*e of T9 34 SFTARM-:
these models Is a fault transection that causes the
device to fail and recover. The other models the
handlin4 of computation transactions during both normal
and failure aedes. JV

The fault transaction wmts for sone TIP and thes 3EFF Off
global flag at nde SIFM. eaing that all coputsa-
tion transactions that arrive at the device during OtNIUT i II 93
failure will bypass it. Next the failure transaction
uses the ShLYLSN node to got the power of mode 09YI to
be s very large number, ensuring that all the oomputa-
ties transactions waiting or receiving service at Dif~t EI

Ll seave DV'Z imuediately. Finally. the fault trans-
scon will set DBVI'o power to sero so as to block all
sulseluent requests. After a delay of some T!R the
fau.t transaction will set the power of DZYI back to I
norsal op raton) and reset the global flag.

COMZIIX C IllZ
Computation transetions so to node CI D to hove their
phase modified Is case of failure. ring normal opera- nag" 5.3. let polisre ANdel
tio the fa&lure flag has bees reet o the trasacmtion
will visit 09lI. Durtng the failure of D0TI. the The hoot transaction is interrupted and gets the idea-
transactions will bypass the D9II mode mad leave the tity of its Laterruptor at CGETD. mad then at ZNSt9
c00p1o2 node DISCI with a treassotiom phase that implies Interrupts all its stbliangs i CSN. Notice that this
failure. Similarly CID2 handles the flushed trances- time Lt does aet visit aUCOmP since it is not inotan-
ties that reach it immediately after a failure oeemr ttattn( a ne copmtatiom. After Iaterrupting all its

siblings. the hoet transaction sets the failure flag9 end
then interrupts the failure transaction at node VIRI.
The failure transection veits the mutual exclusion
region and then enters the ?TR delay node. The recovery
from failure limply requires that the failure flag be
reset. Zf the hoest transaction is interrapted by a host
usr trtnSetion while the failure lag t set. the host
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treasaction interrupts the host sr tretsetio t nd a d___l____
indicates that the computation has failed. This has
bee shows in Figure 5.3, which does not Illustrate (irv.4] Ditell, A. D. and Nelsen, 1. J. "mplementin
normal operation of the host transaotion.

Renate Procedure Cals.* ACIR Trans. 3n
5.2. COMUMWICAION$ FAILURES Sys. 2.1 (February 1988t), pp. .7- -

Failure of communicqtions effects the static paths (MOaSA ltuse. J. C. st. al. :EUS: An lb,-# -
between t1.usters Li the system. There is a hierarchy of oriented High t.tegri.y isttr.ut. , .
fa2..urss in conmunications. A link failure implies that Syetea.* (to appear in8 4CM ^Zonference 4,
sone e•t of paths between clusters fail. V• call theme
paths the link's dependent set. Failure of a gateway 1RA84] Informsatio Research Associates, Performance
host Implies that the Link dependent sets of all the An6l1st a orlheoch S £!AWS Users
links connected to that gatwmy fail. finally a cluster Ranuel, Austin, Toxs 7 t 7001Q{ i.J
failure LaiLlee that all the lint dependent sets of all
the links comocted to all the gateway$ of that cluater ([NMS Mtealfe. 2. M. God Sags, D. R. Ethernet:
have failed. Distributed Packet Switching for Local Computer

Netwerks.* cosaua. ACM 19.7 (July 1976), pp.
We W iefne four data structures to hold the cluster 2.7-25. *

information. the link information, the path information
and the correct connetivity isfermatte. All paths (51382] Shriveta. S. K. and Pamiewi. F. 'he
between any two clusters are ordered by Ineremsing Desiga of a Reliable Remote Procedure Call
length. The current shortest path between two clusters Mechanism.* IEEE Trans. on Computers,. Vol. C.
is pointed to by the commectivity matrix. 31, 7 (July 192,-F.92297.

Faults tn the conaumiction system affeet the long di.- [S1uz] Spestor. A. Z. *Performsn4 Remote Operations
tance hlinks or the loal area networks. ?he* ause Iffiietestly e a I-eel Computer retwor*.
packet transactions to be fluhed oat of the" re-turcem Ccmmu,. ACM 25.4 (April 1962). pp. 246-260.
as in the models for device failure. Thus, the expanded
tIO for the DL. and LAMS will include nodes that force
packet treansactlon to bypass the resource in case of
failure. Figure 4.5 is extended to record tramnmissio
failure and the packet is re-transmitted after se
delay by another rouete.

The PAWS SINE node interface to FO1TRAN was used to
model communication failure in order to manipulate the
data structures easily. The details of this model have
currently been completed at MlA and will agpOar La a
futur* report.

6. CONCLUStONS

We have prsented a practical modeling methedology for
distributed systems encompeesing model* of fault prom-
Cation and fault recovery strategies. PAWS programe
using thee models have been Lmplementted so ecocutod.
The major advTata"so of our nethodeley are 1) it is
practical and usable by practitioners today, d 2) It
t& hioesreh1-0tn. thus rt tttine 4407 modification of a
complex model ad permitting the mdelind of a complex
sytem to praced in onjumetioen With the de of that
system.

7,he IPC mechanism is, as we have mentioned earlier, a
1':!.buted proermanfla priatLve. Thie prtaitiv L
ised oy stomic Istabae tranactions Ln the ZE S system
Aesign. The sodels for atomic actions will thus use the
%ade" we nave developed in this paper.

We have also presented tn this paper some importeat
modeling techniques using PAWS. 00e of them is a clear
intuitive model of a CSMA/CD network. Another io an
effective meas of Integrating fault modeling with
performance modeling.

This writ was partially funded by the Rome Air
Development Center ad was performed io conjunction
with thio oneyweLl Corporation.
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ESD elements to perform effective acquisition of C3! systems. The areas
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battle management, information processing, surveillance sensors,
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